Résumé
An integrator in measurement and control applications is an element whose output signal is the time integral of its input signal. It accumulates the input quantity over a defined time to produce a representative output. Integration is an important part of many engineering and scientific applications. Mechanical integrators are the oldest type and are still used for metering water flow or electrical power. Electronic analogue integrators are the basis of analog computers and charge amplifiers. Integration can also be performed by algorithms in digital computers. See also Integrator at op amp applications and op amp integrator An electronic integrator is a form of first-order low-pass filter, which can be performed in the continuous-time (analog) domain or approximated (simulated) in the discrete-time (digital) domain. An integrator will have a low pass filtering effect but when given an offset it will accumulate a value building it until it reaches a limit of the system or overflows. A voltage integrator is an electronic device performing a time integration of an electric voltage, thus measuring the total volt-second product. A simple resistor–capacitor circuit acts as an integrator at high frequencies. An op amp integrator (e.g. Figure 1) works over all frequencies and provides gain (though limited by the op amp's gain–bandwidth product). A current integrator is an electronic device performing a time integration of an electric current, thus measuring a total electric charge. A charge amplifier is an example of current integrator. A current integrator is also used to measure the electric charge on a Faraday cup in a residual gas analyzer to measure partial pressures of gasses in a vacuum. Another application of current integration is in ion beam deposition, where the measured charge directly corresponds to the number of ions deposited on a substrate, assuming the charge state of the ions is known. The two current-carrying electrical leads must to be connected to the ion source and the substrate, closing the electric circuit which in part is given by the ion beam.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
EE-203(b): Electronics II
Maîtriser des blocs fonctionnels nécessitant un plus haut niveau d'abstraction. Réalisation de fonctions électroniques de haut niveau exploitant les amplificateurs opérationnels.
EE-295: Electrical systems and electronics I
Le but de ce cours est d'apporter les connaissances et les expériences fondamentales pour comprendre les systèmes électriques et électroniques de base.
EE-594: Smart sensors for IoT
This lecture provides insights in the design and technologies of Internet-of-Things sensor nodes, with focus on low power technologies. The lectures alternate every two weeks between sensing technolog
Afficher plus
Séances de cours associées (34)
Intégration numérique
Explore les méthodes d'intégration numérique, y compris la formule de quadrature composite et l'efficacité de la règle de Simpson, visant à améliorer la compréhension des élèves et à réduire le stress.
Circuits analogiques pour Biochip: Biocapteurs & Température
Explore les circuits analogiques pour les biopuces, en mettant l'accent sur les biocapteurs et la compensation de température dans la conception des biopuces.
Electronique de laboratoire
Couvre la structure du cours, les affectations de groupe et les sujets clés de l'électronique de laboratoire.
Afficher plus
Publications associées (33)