History monoidIn mathematics and computer science, a history monoid is a way of representing the histories of concurrently running computer processes as a collection of strings, each string representing the individual history of a process. The history monoid provides a set of synchronization primitives (such as locks, mutexes or thread joins) for providing rendezvous points between a set of independently executing processes or threads.
String operationsIn computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. A string is a finite sequence of characters. The empty string is denoted by . The concatenation of two string and is denoted by , or shorter by . Concatenating with the empty string makes no difference: .
Free monoidIn abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A∗. The free semigroup on A is the subsemigroup of A∗ containing all elements except the empty string. It is usually denoted A+.
Algèbre de processusLes algèbres de processus sont une famille de langages formels permettant de modéliser les systèmes (informatiques) concurrents ou distribués. Les algèbres de processus fournissent des outils formels permettant principalement de caractériser les interactions entre processus au sein d'un système concurrent ou distribué, les interactions prenant la forme d'échanges de messages. L'étude des algèbres de processus relève de l'informatique théorique, et leurs applications relèvent principalement du génie logiciel, en particulier des systèmes distribués.
Étoile de KleeneL'étoile de Kleene, parfois appelée fermeture de Kleene ou encore fermeture itérative, est, en théorie des langages, un opérateur unaire utilisé pour décrire les langages formels. Le nom étoile vient de la notation employée, un astérisque, et Kleene de Stephen Cole Kleene qui l'a introduite. L'étoile de Kleene est l'un des trois opérateurs de base utilisés pour définir une expression rationnelle, avec la concaténation et l'union ensembliste.