En physique quantique, le décalage de Lamb ou déplacement de Lamb (en anglais Lamb shift) représente la différence d'énergie entre les deux niveaux de l'atome d'hydrogène, notés en termes spectroscopiques : 2S1/2 et 2P1/2. Ce décalage n'est pas prédit par l'équation de Dirac, qui donne la même énergie à ces deux états. Il a été découvert par Willis Eugene Lamb et son étudiant Robert Retherford, en 1947.
À la suite de la découverte de Lamb, il a été démontré que ce décalage est dû à l'interaction entre les fluctuations quantiques du vide et l'électron de l'hydrogène dans ces orbitales. Le décalage de Lamb a depuis joué un rôle important, à travers la validation des fluctuations de l'énergie du vide, dans la découverte du rayonnement de Hawking émanant des trous noirs.
Cet effet consiste en un dédoublement des raies d’émission d’un spectre atomique. Le modèle de l’atome d’hydrogène en mécanique quantique de l’électron permet de prévoir la valeur des fréquences d’émission électromagnétique (photons) observées dans un spectre d’émission atomique. On observe bien les raies d’émission prévues, mais elles sont dédoublées, et ce dédoublement est inexplicable en théorie quantique de l’électron seul.
La quantification du champ électromagnétique en électrodynamique quantique permet d’expliquer ce phénomène (seconde quantification). Ce phénomène s'explique par l’influence des fluctuations de l’état de vide du champ électromagnétique (photons virtuels). Le vide quantique possède une énergie moyenne nulle (en physique quantique, seules les valeurs moyennes des propriétés sont observables : par définition, les valeurs observables sont les valeurs moyennes sur des opérateurs dit observables appliqués sur la fonction d’onde du système considéré). Mais son énergie sous forme de fluctuations n’est pas nulle et même diverge (est infinie). Ces fluctuations sont dites virtuelles c’est-à-dire qu’on ne peut les observer. Par contre, les fluctuations virtuelles du vide ont une influence sur ce qui peut être observé.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En physique quantique, le décalage de Lamb ou déplacement de Lamb (en anglais Lamb shift) représente la différence d'énergie entre les deux niveaux de l'atome d'hydrogène, notés en termes spectroscopiques : 2S1/2 et 2P1/2. Ce décalage n'est pas prédit par l'équation de Dirac, qui donne la même énergie à ces deux états. Il a été découvert par Willis Eugene Lamb et son étudiant Robert Retherford, en 1947. À la suite de la découverte de Lamb, il a été démontré que ce décalage est dû à l'interaction entre les fluctuations quantiques du vide et l'électron de l'hydrogène dans ces orbitales.
Un hydrogénoïde ou atome hydrogénoïde est un atome qui a perdu tous ses électrons sauf un, c'est un ion monoatomique, un cation ne possédant qu'un seul électron. Il a alors une structure semblable à celle de l'atome d'hydrogène, hormis la charge de son noyau Ze où Z est le numéro atomique de l'élément chimique, et e la charge élémentaire. La caractéristique essentielle de ces ions est d'avoir un spectre électromagnétique semblable à celui de l'hydrogène et interprétable dans le cadre du modèle de Bohr.
vignette|Structures fines et hyperfines dans l'hydrogène. Le couplage des différents moments cinétiques conduit à la division du niveau d'énergie. Non dessiné à l'échelle. Le moment cinétique de spin électronique, S est couplé au moment cinétique orbital électronique, L, pour former le moment angulaire électronique total , J. Celui-ci est ensuite couplé au moment cinétique de spin nucléaire, I, pour former le moment cinétique total, F. Le terme symbole prend la forme 2S+1L avec les valeurs de L représentées par des lettres (S,P,D ,F ,G,H,.