We study the magneto-rotational instability (MRI) dynamo in a geometrically thin disc (H/R < 1) using stratified zero net (vertical) flux shearing box simulations. We find that mean fields and electromotive forces (EMFs) oscillate with a primary frequency ...
Small-scale dynamos play important roles in modern astrophysics, especially on galactic and extragalactic scales. Owing to dynamo action, purely hydrodynamic Kolmogorov turbulence hardly exists and is often replaced by hydromagnetic turbulence. Understandi ...
External kink modes, believed to be the drive of the 0-limiting resistive wall mode, are strongly stabilized by the presence of a separatrix. We thus propose a novel mechanism explaining the appearance of long-wavelength global instabilities in free bounda ...
We study the dynamics of magnetic fields in chiral magnetohydrodynamics, which takes into account the effects of an additional electric current related to the chiral magnetic effect in high-energy plasmas. We perform direct numerical simulations, consideri ...
3D free boundary equilibrium computations have recently been used to model external kinks and edge harmonic oscillations (EHOs), comparing with linear MHD stability codes, and nonlinear analytic theory [Kleiner et al., Phys. Plasma Controlled Fusion 61, 08 ...
In the Wendelstein 7-X (W7-X) stellarator, the vacuum rotational transform, ι, has a flat radial profile and does not cross any major rational resonance. Nevertheless, during plasma operation the ι‐profile can be strongly modified by electron cyclotron cur ...
To exploit fusion as a source of energy, a hot and dense confined plasma is needed. This is
achieved in tokamaks by actively controlling the plasma state meaning shape, position and
internal kinetic profiles. This thesis addresses two topics: the developme ...
Local gyrokinetic simulations use a field-aligned domain that twists due to the magnetic shear of the background magnetic equilibrium. However, if the magnetic shear is strong and/or the domain is long, the twist can become so extreme that it fails to prop ...
The chiral magnetic effect (CME) is a quantum relativistic effect that describes the appearance of an additional electric current along a magnetic field. It is caused by an asymmetry between the number densities of left- and right-handed fermions, which ca ...
A novel, compact, quasi-axisymmetric configuration is presented which exhibits low fast-particle losses and is stable to ideal magnetohydrodynamic (MHD) instabilities. The design has fast-particle loss rates below 8% for flux surfaces within the half-radiu ...