Pioneer axon is the classification given to axons that are the first to grow in a particular region. They originate from pioneer neurons, and have the main function of laying down the initial growing path that subsequent growing axons, dubbed follower axons, from other neurons will eventually follow.
Several theories relating to the structure and function of pioneer axons are currently being explored. The first theory is that pioneer axons are specialized structures, and that they play a crucial role in guiding follower axons. The second is that pioneer axons are no different from follower axons, and that they play no role in guiding follower axons.
Anatomically, there are no differences between pioneer and follower axons, although there are morphological differences. The mechanisms of pioneer axons and their role in axon guidance is currently being explored. In addition, many studies are being conducted in model organisms, such grasshoppers, zebrafish, and fruit flies to study the effects of manipulations of pioneer axons on neuronal development.
Santiago Ramon y Cajal, considered the father of modern neuroscience, was one of the first to physically observe growing axons. Moreover, he observed that axons grew in a structured, guided manner. He advocated that axons were guided by chemotactic cues. Indeed, later experiments showed that in both invertebrate and vertebrate models, axons grew along pre-determined routes to create a reproducible scaffold of nerves.
Ramon y Cajal's views faced some competition from those of Paul Alfred Weiss, his contemporary neuroscientist during the 1920s and 1930s. Weiss argued that functional specificity did not depend on specific axon connections, and that nonspecific mechanical cues participated in guiding axons. Subsequent investigations into chemotactics cues that started in the 1970s eventually proved that Ramon y Cajal's initial ideas were intuitive and ahead of his time.
The mechanism of growth of pioneer neurons has been investigated in the central and peripheral nervous systems of invertebrate animals.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Netrins are a class of proteins involved in axon guidance. They are named after the Sanskrit word "netr", which means "one who guides". Netrins are genetically conserved across nematode worms, fruit flies, frogs, mice, and humans. Structurally, netrin resembles the extracellular matrix protein laminin. Netrins are chemotropic; a growing axon will either move towards or away from a higher concentration of netrin.
UNC-5 is a receptor for netrins including UNC-6. Netrins are a class of proteins involved in axon guidance. UNC-5 uses repulsion to direct axons while the other netrin receptor UNC-40 attracts axons to the source of netrin production. The term netrin was first used in a study done in 1990 in Caenorhabditis elegans and was called UNC-6. Studies performed on rodents in 1994 have determined that netrins are vital to guidance cues. The vertebrate orthologue of UNC-6, netrin-1 was determined to be a key guidance cue for axons moving toward the ventral midline in the rodent embryo spinal cord.
Un cône de croissance est une extension dynamique, riche en actine, d'un neurite en développement cherchant un organe cible. Il se situe à l'extrémité distale d'un prolongement axonal ou dendritique neuroblastique en croissance . Il s'agit d'une structure cellulaire transitoire et mobile, qui a pour fonction d'explorer l'environnement extracellulaire et de répondre au guidage axonal assuré par différentes molécules. Les protéines de guidage indiquent au cône de croissance sa voie de migration en modifiant la vitesse ou la direction de sa croissance par une biosynthèse des protéines adaptée.
Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.
Explore la rigidité de flexion des interfaces neurales douces, y compris les axones et les sondes pénétrantes, avec des modèles géométriques idéaux et des gammes de modules élastiques.
Explore la réaction du corps étranger aux implants, la phase aiguë d'insertion, l'impact de perfusion, la rupture BBB, les processus de réparation, l'imagerie et la coloration cellulaire.
Central nervous system organogenesis is a complex process that obeys precise architectural rules. The impact that nervous system architecture may have on its functionality remains, however, relatively unexplored. To clarify this problem, we analyze the dev ...
Here, we show that, in the developing spinal cord, after the early Wnt-mediated Tcf transcription activation that confers dorsal identity to neural stem cells, neurogenesis redirects beta-catenin from the adherens junctions to the nucleus to stimulate Tcfo ...
Cambridge2023
, ,
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherica ...