In physics a conserved current is a current, , that satisfies the continuity equation . The continuity equation represents a conservation law, hence the name.
Indeed, integrating the continuity equation over a volume , large enough to have no net currents through its surface, leads to the conservation law
where is the conserved quantity.
In gauge theories the gauge fields couple to conserved currents. For example, the electromagnetic field couples to the conserved electric current.
Conserved current is the flow of the canonical conjugate of a quantity possessing a continuous translational symmetry. The continuity equation for the conserved current is a statement of a conservation law.
Examples of canonical conjugate quantities are:
Time and energy - the continuous translational symmetry of time implies the conservation of energy
Space and momentum - the continuous translational symmetry of space implies the conservation of momentum
Space and angular momentum - the continuous rotational symmetry of space implies the conservation of angular momentum
Wave function phase and electric charge - the continuous phase angle symmetry of the wave function implies the conservation of electric charge
Conserved currents play an extremely important role in theoretical physics, because Noether's theorem connects the existence of a conserved current to the existence of a symmetry of some quantity in the system under study. In practical terms, all conserved currents are the Noether currents, as the existence of a conserved current implies the existence of a symmetry. Conserved currents play an important role in the theory of partial differential equations, as the existence of a conserved current points to the existence of constants of motion, which are required to define a foliation and thus an integrable system. The conservation law is expressed as the vanishing of a 4-divergence, where the Noether charge forms the zeroth component of the 4-current.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Couvre des sujets avancés dans la théorie quantique des champs, y compris les représentations du groupe Poincaré et la construction d'irreps unitaires.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
En physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
Le théorème de Noether exprime l'équivalence qui existe entre les lois de conservation et l'invariance du lagrangien d'un système par certaines transformations (appelées symétries) des coordonnées. Démontré en 1915 et publié en 1918 par la mathématicienne Emmy Noether à Göttingen, ce théorème fut qualifié par Albert Einstein de « monument de la pensée mathématique » dans une lettre envoyée à David Hilbert en vue de soutenir la carrière de la mathématicienne.
We study two-point functions of local operators and their spectral representation in UV complete quantum field theories in generic dimensions focusing on conserved currents and the stress-tensor. We establish the connection with the central charges of the ...
It is well known that helical magnetic fields undergo a so-called inverse cascade by which their correlation length grows due to the conservation of magnetic helicity in classical ideal magnetohydro-dynamics (MHD). At high energies above approximately 10 M ...
In this work, we elaborate on two recently discovered invariance principles, according to which transport coefficients are, to a large extent, independent of the microscopic definition of the densities and currents of the conserved quantities being transpo ...