Concept

Chiffre de Hill

En cryptographie symétrique, le chiffre de Hill est un modèle simple d'extension du chiffrement affine à un bloc. Ce système étudié par Lester S. Hill, utilise les propriétés de l'arithmétique modulaire et des matrices. vignette|Lester Sanders Hill (1891-1961) Il consiste à chiffrer le message en substituant les lettres du message, non plus lettre à lettre, mais par groupe de lettres. Il permet ainsi de rendre plus difficile le cassage du code par observation des fréquences. Lester S. Hill a aussi conçu une machine capable de réaliser mécaniquement un tel codage. vignette|Machine de Hill (1929) Chaque caractère est d'abord codé par un nombre compris entre 0 et n – 1 (son rang dans l'alphabet diminué de 1 ou son code ASCII diminué de 32). Les caractères sont alors regroupés par blocs de p caractères formant un certain nombre de vecteurs . Les nombres étant compris entre 0 et n – 1, on peut les considérer comme des éléments de et X est alors un élément de . On a construit au préalable une matrice p × p d'entiers : A. Le bloc X est alors chiffré par le bloc Y = AX, le produit s'effectuant modulo n. Pour déchiffrer le message, il s'agit d'inverser la matrice A modulo n. Cela peut se faire si le déterminant de cette matrice possède un inverse modulo n (c'est-à-dire, d'après le théorème de Bachet-Bézout, si det(A) est premier avec n). En effet, le produit de A et de la transposée de sa comatrice donne (où désigne la matrice identité de taille p) donc s'il existe un entier k tel que alors, en notant B n'importe quelle matrice congrue modulo n à k com(A), on aura soit encore On imagine dans cette section que chaque lettre est codée par son rang dans l'alphabet diminué de 1 et que le chiffrement s'effectue par blocs de 2 lettres. Ici n = 26 et p = 2. Et l'on cherche à chiffrer le message suivant : TEXTEACRYPTER en utilisant une matrice A dont le déterminant est premier avec 26. Pour construire une telle matrice, il suffit de choisir trois entiers a, b, c au hasard mais tels que a soit premier avec 26, ce qui permet de choisir le dernier terme d tel que ad – bc soit inversible modulo 26.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.