Résumé
Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom. Typically the photon contained electromagnetic field is applied to the two-level atom through the use of a monochromatic laser. A two-level atom is a specific type of two-state system in which the atom can be found in the two possible states. The two possible states are if an electron is found in its ground state or the excited state. In many experiments an atom of lithium is used because it can be closely modeled to a two-level atom as the excited states of the singular electron are separated by large enough energy gaps to significantly reduce the possibility of the electron jumping to a higher excited state. Thus it allows for easier frequency tuning of the applied laser as frequencies further off resonance can be used while still driving the electron to jump to only the first excited state. Once the atom is excited, it will release a photon with the same energy as the energy difference between the excited and ground state. The mechanism for this release is the spontaneous decay of the atom. The emitted photon is released in an arbitrary direction. While the transition between two specific energy levels is the dominant mechanism in resonance fluorescence, experimentally other transitions will play a very small role and thus must be taken into account when analyzing results. The other transitions will lead to emission of a photon of a different atomic transition with much lower energy which will lead to "dark" periods of resonance fluorescence. The dynamics of the electromagnetic field of the monochromatic laser can be derived by first treating the two-level atom as a spin-1/2 system with two energy eigenstates which have energy separation of ħω_0. The dynamics of the atom can then be described by the three rotation operators, ,,, acting upon the Bloch sphere.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.