Concept

Hypoxanthine-guanine phosphoribosyltransférase

Résumé
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is an enzyme encoded in humans by the HPRT1 gene. HGPRT is a transferase that catalyzes conversion of hypoxanthine to inosine monophosphate and guanine to guanosine monophosphate. This reaction transfers the 5-phosphoribosyl group from 5-phosphoribosyl 1-pyrophosphate (PRPP) to the purine. HGPRT plays a central role in the generation of purine nucleotides through the purine salvage pathway. HGPRT catalyzes the following reactions: HGPRTase functions primarily to salvage purines from degraded DNA to reintroduce into purine synthetic pathways. In this role, it catalyzes the reaction between guanine and phosphoribosyl pyrophosphate (PRPP) to form GMP, or between hypoxanthine and phosphoribosyl pyrophosphate (PRPP) to form inosine monophosphate. Comparative homology modelling of this enzyme in L. donovani suggest that among all of the computationally screened compounds, pentamidine, 1,3-dinitroadamantane, acyclovir and analogs of acyclovir had higher binding affinities than the real substrate (guanosine monophosphate). The in silico and in-vitro correlation of these compounds were test in Leishmania HGPRT and validates the result. Mutations in the gene lead to hyperuricemia. At least 67 disease-causing mutations in this gene have been discovered: Some men have partial (up to 20% less activity of the enzyme) HGPRT deficiency that causes high levels of uric acid in the blood, which leads to the development of gouty arthritis and the formation of uric acid stones in the urinary tract. This condition has been named the Kelley–Seegmiller syndrome. Lesch–Nyhan syndrome is due to deficiency of HGPRT caused by HPRT1 mutation. Some mutations have been linked to gout, the risk of which is increased in hypoxanthine-guanine phosphoribosyltransferase deficiency. HPRT expression on the mRNA and protein level is induced by hypoxia inducible factor 1 (HIF1A). HIF-1 is a transcription factor that directs an array of cellular responses that are used for adaptation during oxygen deprivation.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.