Résumé
droite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite. Une feuille de courant (indiquée par les croix) peut se former au niveau de la zone de reconnexion. Le processus n'est pas encore parfaitement compris ni décrit. Une fois lancé, il peut se développer beaucoup plus rapidement que ce qui est actuellement prédit par les modèles standard. vignette|380px|L'évolution de la reconnexion au cours d'une éruption solaire. La reconnexion magnétique est un processus physique dans les plasmas fortement conducteurs, par lequel la topologie du champ magnétique est ré-arrangée et une partie de l'énergie magnétique est convertie en énergie cinétique, thermique et en accélération de particules. Ce phénomène se développe sur une échelle de temps intermédiaire entre la diffusion résistive lente du champ magnétique et l'échelle rapide d'Alfvén. Selon la théorie de la magnétohydrodynamique (MHD) résistive, la reconnexion se produit parce que la résistivité électrique du plasma près de la couche limite s'oppose au courant électrique nécessaire pour soutenir le changement de topologie du champ magnétique. Le besoin d'un tel courant électrique est illustré par une des équations de Maxwell, La résistivité de la nappe de courant permet au flux magnétique des deux côtés de diffuser à travers la nappe de courant, annulant ainsi le flux de l'autre côté de la limite. Quand cela arrive, le plasma est poussé vers l'extérieur par les forces de tension magnétique le long des lignes magnétiques.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
PHYS-424: Plasma II
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
PHYS-325: Introduction to plasma physics
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
PHYS-732: Plasma Diagnostics in Basic Plasma Physics Devices and Tokamaks: from Principles to Practice
The programme will allow students to learn plasma diagnostics and data processing methods of modern fusion experiments and to bridge the gap between diagnostics theory and experimental practice.
Afficher plus