Résumé
droite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite. Une feuille de courant (indiquée par les croix) peut se former au niveau de la zone de reconnexion. Le processus n'est pas encore parfaitement compris ni décrit. Une fois lancé, il peut se développer beaucoup plus rapidement que ce qui est actuellement prédit par les modèles standard. vignette|380px|L'évolution de la reconnexion au cours d'une éruption solaire. La reconnexion magnétique est un processus physique dans les plasmas fortement conducteurs, par lequel la topologie du champ magnétique est ré-arrangée et une partie de l'énergie magnétique est convertie en énergie cinétique, thermique et en accélération de particules. Ce phénomène se développe sur une échelle de temps intermédiaire entre la diffusion résistive lente du champ magnétique et l'échelle rapide d'Alfvén. Selon la théorie de la magnétohydrodynamique (MHD) résistive, la reconnexion se produit parce que la résistivité électrique du plasma près de la couche limite s'oppose au courant électrique nécessaire pour soutenir le changement de topologie du champ magnétique. Le besoin d'un tel courant électrique est illustré par une des équations de Maxwell, La résistivité de la nappe de courant permet au flux magnétique des deux côtés de diffuser à travers la nappe de courant, annulant ainsi le flux de l'autre côté de la limite. Quand cela arrive, le plasma est poussé vers l'extérieur par les forces de tension magnétique le long des lignes magnétiques.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (23)
Champ magnétique interplanétaire
vignette|La nappe de courant héliosphérique le long de la spirale de Parker est la forme prise par le champ magnétique solaire dans le milieu interplanétaire. Le champ magnétique interplanétaire (CMI), également connu sous le nom de champ magnétique de l'héliosphère, est le champ magnétique du Soleil porté par le vent solaire à travers les planètes et autres corps du Système solaire, dans le milieu interplanétaire jusqu'au confins de l'héliosphère. Les modélisations actuelles du CMI lui donnent une forme de spirale, nommée spirale de Parker.
Onde d'Alfvén
vignette|Illustration des champs dans les ondes magnétohydrodynamiques. La partie supérieure montre comment les ondes d'Alfvén peuvent être considérées comme des ondulations des lignes de champ magnétique ; la partie inférieure montre comment le champ magnétique est densifié et aminci dans une onde magnétosonique. Symboles : B0 est le champ magnétique non perturbé dans le plasma ; k est le vecteur d'onde, indiquant la direction de propagation de l'onde ; B1, E1, v1 et j1 sont les perturbations causées par l'onde dans le champ magnétique, le champ électrique, la vitesse du plasma et le courant électrique, respectivement.
Éjection de masse coronale
350px|vignette|droite|Éjection de masse coronale produite le 31 août 2012. Une éjection de masse coronale (en abrégé EMC ; en anglais coronal mass ejection, CME) est une bulle de plasma produite dans la couronne d'une étoile (par exemple la couronne solaire). Elle est souvent liée à une éruption solaire ou à l'apparition d'une protubérance solaire, mais ce n'est pas systématique. Les EMC sont des phénomènes à grande échelle : leur taille peut atteindre plusieurs dizaines de rayons solaires.
Afficher plus