Microscope à statif inverséLe microscope 2D à statif inversé permet une observation sur un plan focal. Indispensable dans cette discipline car les échantillons sont opaques, lourds et certaines fois indéplaçables. Leur surface est attaquée par un procédé chimique et polie pour être observée en réflexion. Reichert (Vienne) type MEF2 utilisé dans les années 1970-1980. Il permet en microbiologie d'observer des cellules vivantes en lumière transmise et/ou fluorescence.
Real imageIn optics, an image is defined as the collection of focus points of light rays coming from an object. A real image is the collection of focus points actually made by converging/diverging rays, while a is the collection of focus points made by extensions of diverging or converging rays. In other words, it is an image which is located in the plane of convergence for the light rays that originate from a given object.
Microscope à force atomiquethumb|350px|Le premier microscope à force atomique du monde, au musée de la Science de Londres. Le microscope à force atomique (AFM pour atomic force microscope) est un type de microscope à sonde locale permettant de visualiser la topographie de la surface d'un échantillon. Inventé en 1985, par Gerd Binnig, Calvin Quate et Christoph Gerber, ce type de microscopie repose essentiellement sur l'analyse d'un objet point par point au moyen d'un balayage via une sonde locale, assimilable à une pointe effilée.
Focus stackingLe focus stacking (anglicisme), parfois traduit par « empilement de mises au point », est un procédé consistant à combiner plusieurs images dont le plan focal varie, pour donner une image dotée d'une plus grande profondeur de champ qu'avec une image unique. On obtient ainsi des images qui seraient physiquement impossibles à réaliser avec des moyens photographiques classiques. Il est particulièrement bien adapté à la photographie numérique, et aux situations où une image unique a une très courte profondeur de champ, comme en macrophotographie et photomicrographie.
Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Optical sectioningOptical sectioning is the process by which a suitably designed microscope can produce clear images of focal planes deep within a thick sample. This is used to reduce the need for thin sectioning using instruments such as the microtome. Many different techniques for optical sectioning are used and several microscopy techniques are specifically designed to improve the quality of optical sectioning. Good optical sectioning, often referred to as good depth or z resolution, is popular in modern microscopy as it allows the three-dimensional reconstruction of a sample from images captured at different focal planes.
Profondeur de champvignette|Un diaphragme ouvert permet d'obtenir une courte profondeur de champ qui isole le sujet de son environnement. vignette|220x220px|Influence de l'ouverture sur la netteté. La profondeur de champ est un facteur déterminant la manière dont une prise de vue peut gérer la netteté relative des différents plans du sujet photographié ou observé. Elle est conçue comme une zone que l'opérateur peut augmenter ou réduire, le reste du sujet, en avant ou arrière de cette zone, perdant ou gagnant inversement en netteté.