thumb|Détail d'une enluminure du , contrepoinçon d'une lettre capitale P, au début des Éléments d'Euclide, dans une traduction attribuée à Adélar de Bath. Une femme porte une équerre d'une main et utilise un compas de l'autre pour mesurer des distances sur un diagramme. Un groupe de moines, apparemment ses étudiants, la regarde. Au Moyen Âge, toutes les allégories du savoir comme des vertus et des vices sont féminines, Philosophie guide Boèce dans la Consolation, Béatrice Dante dans la Comédie, Logistique Poliphile dans le Songe. Ainsi aussi le premier auteur d'un manuel de pédagogie est Dhuoda.
L'objet de la géométrie (géométrie, du γεωμετρία, gé : terre ; metron : mesure) concerne la connaissance des relations spatiales. Avec l'arithmétique (étude des nombres), elle constituait, dans l'Antiquité, l'un des deux domaines des mathématiques.
La géométrie classique, issue de celle d'Euclide, est basée sur des constructions obtenues à l'aide de droites et de cercles, c'est-à-dire élaborées « à la règle et au compas ». Avec la considération de figures plus complexes et la nécessité de la mesure, la barrière entre la géométrie et l'étude des nombres et de leurs relations (arithmétique, algèbre) s'est peu à peu estompée.
À l'époque moderne, les concepts géométriques ont été généralisés et portés à un plus haut degré d'abstraction, au point de perdre à proprement parler leur signification d'origine. Peu à peu abstraits ou soumis à l'usage de méthodes algébriques nouvelles, ils se sont pourrait-on dire dissous dans l'ensemble des mathématiques où ils sont aujourd'hui utilisés en tant qu'outils dans de très nombreuses branches.
vignette|Triangle mégalithe de la Valle di Levante à Fondachelli Fantina, Sicile
Si les Grecs peuvent être considérés comme les fondateurs de la géométrie en tant que science et discipline mathématique, de nombreuses connaissances en géométrie, nécessaires à la topographie, l'architecture, l'astronomie et l'agriculture, ont précédé la civilisation grecque.