Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We develop structure-preserving reduced basis methods for a large class of problems by resorting to their semi-discrete formulation as Hamiltonian dynamical systems. In this perspective, the phase space is naturally endowed with a Poisson manifold structur ...
While reduced-order models (ROMs) are popular for approximately solving large systems of differential equations, the stability of reduced models over long-time integration remains an open question. We present a greedy approach for ROM generation of paramet ...
2017
,
In the recent years, considerable attention has been paid to preserving structures and invariants in reduced basis methods, in order to enhance the stability and robustness of the reduced system. In the context of Hamiltonian systems, symplectic model redu ...
We develop structure-preserving reduced basis methods for a large class of nondissipative problems by resorting to their formulation as Hamiltonian dynamical systems. With this perspective, the phase space is naturally endowed with a Poisson manifold struc ...
Geometric integrators of the Schrödinger equation conserve exactly many invariants of the exact solution. Among these integrators, the split-operator algorithm is explicit and easy to implement but, unfortunately, is restricted to systems whose Hamiltonian ...
During the past decade, model order reduction (MOR) has been successfully applied to reduce the computational complexity of elliptic and parabolic systems of partial differential equations (PDEs). However, MOR of hyperbolic equations remains a challenge. S ...
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamica ...
2017
, ,
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...
MATHICSE2017
A quantum anomaly is the breaking of symmetry with respect to some transformations after the quantization of a classical Hamiltonian or Lagrangian system. It is shown that both the Noether theorems (including their infinite-dimensional versions) and the ex ...
Springer Verlag2017
In this work, we focus on the Dynamical Low Rank (DLR) approximation of PDEs equations with random parameters. This can be interpreted as a reduced basis method, where the approximate solution is expanded in separable form over a set of few deterministic b ...