Concept

Gromov's systolic inequality for essential manifolds

In the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983; it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane. Technically, let M be an essential Riemannian manifold of dimension n; denote by sysπ1(M) the homotopy 1-systole of M, that is, the least length of a non-contractible loop on M. Then Gromov's inequality takes the form where Cn is a universal constant only depending on the dimension of M. essential manifold A closed manifold is called essential if its fundamental class defines a nonzero element in the homology of its fundamental group, or more precisely in the homology of the corresponding Eilenberg–MacLane space. Here the fundamental class is taken in homology with integer coefficients if the manifold is orientable, and in coefficients modulo 2, otherwise. Examples of essential manifolds include aspherical manifolds, real projective spaces, and lens spaces. Gromov's original 1983 proof is about 35 pages long. It relies on a number of techniques and inequalities of global Riemannian geometry. The starting point of the proof is the imbedding of X into the Banach space of Borel functions on X, equipped with the sup norm. The imbedding is defined by mapping a point p of X, to the real function on X given by the distance from the point p. The proof utilizes the coarea inequality, the isoperimetric inequality, the cone inequality, and the deformation theorem of Herbert Federer. One of the key ideas of the proof is the introduction of filling invariants, namely the filling radius and the filling volume of X. Namely, Gromov proved a sharp inequality relating the systole and the filling radius, valid for all essential manifolds X; as well as an inequality valid for all closed manifolds X.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (6)
Pu's inequality
In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it. A student of Charles Loewner, Pu proved in his 1950 thesis that every Riemannian surface homeomorphic to the real projective plane satisfies the inequality where is the systole of . The equality is attained precisely when the metric has constant Gaussian curvature.
Gromov's inequality for complex projective space
In Riemannian geometry, Gromov's optimal stable 2-systolic inequality is the inequality valid for an arbitrary Riemannian metric on the complex projective space, where the optimal bound is attained by the symmetric Fubini–Study metric, providing a natural geometrisation of quantum mechanics. Here is the stable 2-systole, which in this case can be defined as the infimum of the areas of rational 2-cycles representing the class of the complex projective line in 2-dimensional homology. The inequality first appeared in as Theorem 4.
Systoles of surfaces
In mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949 (unpublished; see remark at end of P. M. Pu's paper in '52). Given a closed surface, its systole, denoted sys, is defined to be the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.