Acoustic theory is a scientific field that relates to the description of sound waves. It derives from fluid dynamics. See acoustics for the engineering approach. For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have In the case that the fluctuations in velocity, density, and pressure are small, we can approximate these as Where is the perturbed velocity of the fluid, is the pressure of the fluid at rest, is the perturbed pressure of the system as a function of space and time, is the density of the fluid at rest, and is the variance in the density of the fluid over space and time. In the case that the velocity is irrotational (), we then have the acoustic wave equation that describes the system: Where we have Starting with the Continuity Equation and the Euler Equation: If we take small perturbations of a constant pressure and density: Then the equations of the system are Noting that the equilibrium pressures and densities are constant, this simplifies to Starting with We can have these equations work for a moving medium by setting , where is the constant velocity that the whole fluid is moving at before being disturbed (equivalent to a moving observer) and is the fluid velocity. In this case the equations look very similar: Note that setting returns the equations at rest. Starting with the above given equations of motion for a medium at rest: Let us now take to all be small quantities. In the case that we keep terms to first order, for the continuity equation, we have the term going to 0. This similarly applies for the density perturbation times the time derivative of the velocity. Moreover, the spatial components of the material derivative go to 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.