Concept

Retrograde signaling

Résumé
Retrograde signaling in biology is the process where a signal travels backwards from a target source to its original source. For example, the nucleus of a cell is the original source for creating signaling proteins. During retrograde signaling, instead of signals leaving the nucleus, they are sent to the nucleus. In cell biology, this type of signaling typically occurs between the mitochondria or chloroplast and the nucleus. Signaling molecules from the mitochondria or chloroplast act on the nucleus to affect nuclear gene expression. In this regard, the chloroplast or mitochondria act as a sensor for internal external stimuli which activate a signaling pathway. In neuroscience, retrograde signaling (or retrograde neurotransmission) refers more specifically to the process by which a retrograde messenger, such as anandamide or nitric oxide, is released by a postsynaptic dendrite or cell body, and travels "backwards" across a chemical synapse to bind to the axon terminal of a presynaptic neuron. Retrograde signals are transmitted from plastids to the nucleus in plants and eukaryotic algae, and from mitochondria to the nucleus in most eukaryotes. Retrograde signals are generally considered to convey intracellular signals related to stress and environmental sensing. Many of the molecules associated with retrograde signaling act on modifying the transcription or by directly binding and acting as a transcription factor. The outcomes of these signaling pathways vary by organism and by stimuli or stress. Retrograde signaling is believed to have arisen after endocytosis of the mitochondria and chloroplast billions of years ago. Originally believed to be photosynthetic bacteria, the mitochondria and chloroplast transferred some of their DNA to the membrane protected nucleus. Thus, some of the proteins required for the mitochondria or chloroplast are within the nucleus. This transfer of DNA further required a network of communication to properly respond to external and internal signals and produce requisite proteins.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.