In physics, dephasing is a mechanism that recovers classical behaviour from a quantum system. It refers to the ways in which coherence caused by perturbation decays over time, and the system returns to the state before perturbation. It is an important effect in molecular and atomic spectroscopy, and in the condensed matter physics of mesoscopic devices. The reason can be understood by describing the conduction in metals as a classical phenomenon with quantum effects all embedded into an effective mass that can be computed quantum mechanically, as also happens to resistance that can be seen as a scattering effect of conduction electrons. When the temperature is lowered and the dimensions of the device are meaningfully reduced, this classical behaviour should disappear and the laws of quantum mechanics should govern the behavior of conducting electrons seen as waves that move ballistically inside the conductor without any kind of dissipation. Most of the time this is what one observes. But it appeared as a surprise to uncover that the so-called dephasing time, that is the time it takes for the conducting electrons to lose their quantum behavior, becomes finite rather than infinite when the temperature approaches zero in mesoscopic devices violating the expectations of the theory of Boris Altshuler, Arkady Aronov and David E. Khmelnitskii. This kind of saturation of the dephasing time at low temperatures is an open problem even as several proposals have been put forward. The coherence of a sample is explained by the off-diagonal elements of a density matrix. An external electric or magnetic field can create coherences between two quantum states in a sample if the frequency corresponds to the energy gap between the two states. The coherence terms decay with the dephasing time or spin–spin relaxation, T2. After coherence is created in a sample by light, the sample emits a polarization wave, the frequency of which is equal to and the phase of which is inverted from the incident light.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (1)
Physique de la matière condensée
La physique de la matière condensée est la branche de la physique qui étudie les propriétés microscopiques et macroscopiques de la matière dans un état dit « condensé ». Ce terme doit être entendu par opposition à d'autres états de la matière, plus dilués, tels que l’état gazeux et les plasmas, ou encore par opposition à l’étude des atomes ou molécules isolés ou peu nombreux. Son objet d’étude consiste donc principalement dans les solides, ce qui explique que cette branche de la physique a longtemps été désignée par le terme de « physique des solides ».

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.