In quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation. In both cases the separate angular momenta are no longer constants of motion, but the sum of the two angular momenta usually still is. Angular momentum coupling in atoms is of importance in atomic spectroscopy. Angular momentum coupling of electron spins is of importance in quantum chemistry. Also in the nuclear shell model angular momentum coupling is ubiquitous. In astronomy, spin–orbit coupling reflects the general law of conservation of angular momentum, which holds for celestial systems as well. In simple cases, the direction of the angular momentum vector is neglected, and the spin–orbit coupling is the ratio between the frequency with which a planet or other celestial body spins about its own axis to that with which it orbits another body. This is more commonly known as orbital resonance. Often, the underlying physical effects are tidal forces. Conservation of angular momentum is the principle that the total angular momentum of a system has a constant magnitude and direction if the system is subjected to no external torque. Angular momentum is a property of a physical system that is a constant of motion (also referred to as a conserved property, time-independent and well-defined) in two situations: The system experiences a spherically symmetric potential field. The system moves (in quantum mechanical sense) in isotropic space. In both cases the angular momentum operator commutes with the Hamiltonian of the system.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (18)
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
PHYS-745: Spin Dynamics
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
Afficher plus
Séances de cours associées (69)
Couplage anisotropie et spin-orbite
Explore l'anisotropie dans les matériaux magnétiques, les effets de couplage spin-orbite et les courbes d'aimantation.
Équilibre des moments linéaires
Analyser les équations d'équilibre linéaire de l'élan et explorer les conséquences de la continuité et de la divergence dans la conservation de l'élan angulaire.
Moments Magnétiques Isolés: Vue d'ensemble
Explore le comportement des atomes dans un champ magnétique et leur réponse magnétique.
Afficher plus
Publications associées (326)

Strong coupling between a microwave photon and a singlet-triplet qubit

Pasquale Scarlino, Jann Hinnerk Ungerer

Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate ...
Nature Portfolio2024

Wave-momentum shaping for moving objects in heterogeneous and dynamic media

Romain Christophe Rémy Fleury, Matthieu Francis Malléjac, Bakhtiyar Orazbayev, Stefan Rotter

Light and sound waves can move objects through the transfer of linear or angular momentum, which has led to the development of optical and acoustic tweezers, with applications ranging from biomedical engineering to quantum optics. Although impressive manip ...
2024

Physical and unphysical regimes of self-consistent many-body perturbation theory

Riccardo Rossi

In the standard framework of self-consistent many-body perturbation theory, the skeleton series for the self-energy is truncated at a finite order N and plugged into the Dyson equation, which is then solved for the propagator G(N). We consider two examples ...
Scipost Foundation2024
Afficher plus
Concepts associés (17)
Interaction spin-orbite
vignette|Structures fines et hyperfines dans l'hydrogène. Le couplage des différents moments cinétiques conduit à la division du niveau d'énergie. Non dessiné à l'échelle. Le moment cinétique de spin électronique, S est couplé au moment cinétique orbital électronique, L, pour former le moment angulaire électronique total , J. Celui-ci est ensuite couplé au moment cinétique de spin nucléaire, I, pour former le moment cinétique total, F. Le terme symbole prend la forme 2S+1L avec les valeurs de L représentées par des lettres (S,P,D ,F ,G,H,.
Hydrogénoïde
Un hydrogénoïde ou atome hydrogénoïde est un atome qui a perdu tous ses électrons sauf un, c'est un ion monoatomique, un cation ne possédant qu'un seul électron. Il a alors une structure semblable à celle de l'atome d'hydrogène, hormis la charge de son noyau Ze où Z est le numéro atomique de l'élément chimique, et e la charge élémentaire. La caractéristique essentielle de ces ions est d'avoir un spectre électromagnétique semblable à celui de l'hydrogène et interprétable dans le cadre du modèle de Bohr.
Effet Zeeman
vignette|Photo de l'effet Zeeman, prise en 1896 par Pieter Zeeman. L’effet Zeeman désigne la séparation d'un niveau atomique d'énergie défini d'un atome ou d'une molécule en plusieurs sous-niveaux d'énergies distinctes, sous l'effet d'un champ magnétique externe. Il y a donc levée de dégénérescence des niveaux énergétiques. L'effet s'observe aisément par spectroscopie : lorsqu'une source de lumière est plongée dans un champ magnétique statique, ses raies spectrales se séparent en plusieurs composantes.
Afficher plus
MOOCs associés (1)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.