Grammaire formelleUne grammaire formelle est un formalisme permettant de définir une syntaxe et donc un langage formel, c'est-à-dire un ensemble de mots admissibles sur un alphabet donné. La notion de grammaire formelle est particulièrement utilisée en programmation logique, compilation (analyse syntaxique), en théorie de la calculabilité et dans le traitement des langues naturelles (tout particulièrement en ce qui concerne leur morphologie et leur syntaxe).
Réécriture (informatique)En informatique théorique, la réécriture (ou récriture) est un modèle de calcul dans lequel il s’agit de transformer des objets syntaxiques (mots, termes, lambda-termes, programmes, preuves, graphes, etc.) en appliquant des règles bien précises. La réécriture est utilisée en informatique, en algèbre, en logique mathématique et en linguistique. La réécriture est utilisée en pratique pour la gestion des courriers électroniques (dans le logiciel sendmail, les entêtes de courrier sont manipulées par des systèmes de réécriture) ou la génération et l'optimisation de code dans les compilateurs.
Symboles terminaux et non terminauxEn informatique, et notamment en théorie des langages, on appelle symboles terminaux et non terminaux les symboles utilisés dans les règles de production d'une grammaire formelle. Les symboles terminaux et les symboles non terminaux font partie d'ensembles disjoints. Les symboles terminaux sont des caractères littéraux qui peuvent apparaître dans les règles de production (en entrée ou sortie) d'une grammaire formelle et ne peuvent pas être subdivisés en éléments plus petits.
Grammaire régulièreEn informatique théorique, en théorie des langages, une grammaire régulière, rationnelle ou à états finis est une grammaire hors-contexte particulière qui décrit un langage régulier. Les grammaires régulières donnent donc une autre possibilité que les expressions rationnelles et les automates finis pour décrire un langage régulier. Une grammaire régulière peut être « à gauche » ou « à droite ». Une grammaire régulière à gauche est un ensemble de règles de la forme : où , sont des symboles non-terminaux et un symbole terminal.
Grammaire contextuelleUne grammaire contextuelle est une grammaire formelle dans laquelle les substitutions d'un symbole non terminal sont soumises à la présence d'un contexte gauche et d'un contexte droit. Elles sont plus générales que les grammaires algébriques. Les langages formels engendrés par les grammaires contextuelles sont les langages contextuels. Ils sont reconnus par les automates linéairement bornés. Les grammaires contextuelles ont été décrites par Noam Chomsky. Ce sont les grammaires de type 1 dans la hiérarchie de Chomsky.
Hiérarchie de Chomskyvignette|Hiérarchie de Chomsky. En informatique théorique, en théorie des langages, et en calculabilité, la hiérarchie de Chomsky (parfois appelée hiérarchie de Chomsky-Schützenberger) est une classification des grammaires formelles (et par extension, des langages formels respectifs engendrés par les grammaires), esquissée par Noam Chomsky en 1956, et décrite de façon formelle en 1959. La hiérarchie introduite par Noam Chomsky repose sur le modèle de grammaire formelle.