Cours associés (30)
CS-433: Machine learning
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
ENV-408: Sensing and spatial modeling for earth observation
Students get acquainted with the process of mapping from images (orthophoto and DEM), as well as with methods for monitoring the Earth surface using remotely sensed data. Methods will span from machi
MICRO-511: Image processing I
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping using Jupyter notebooks. Application to real-world examples in
MATH-212: Analyse numérique et optimisation
L'étudiant apprendra à résoudre numériquement divers problèmes mathématiques. Les propriétés théoriques de ces méthodes seront discutées.
EE-733: Design and Optimization of Internet-of-Things Systems
This course provides a complete overview of the most relevant subfields related to Internet of Things (IoT) systems, it presents the perspectives and the underlying technologies, with a particular foc
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
CS-233(a): Introduction to machine learning (BA3)
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
FIN-418: Machine learning for finance
This course is introduces machine learning techniques for financial applications in algorithmic trading, derivatives pricing, model calibration, hedging, and risk management. The course format is hand
EE-605: Statistical Sequence Processing
This course discusses advanced methods extensively used for the processing, prediction, and classification of temporal (multi-dimensional and multi-channel) sequences. In this context, it also describ
MICRO-723: Deep Learning for Optical Imaging
This course will focus on the practical implementation of artificial neural networks (ANN) using the open-source TensorFlow machine learning library developed by Google for Python.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.