In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
The use of machine learning for predicting ecotoxicological outcomes is promising, but underutilized. The curation of data with informative features requires both expertise in machine learning as well as a strong biological and ecotoxicological background, ...
Situated in the intersection of audiovisual archives, computational methods, and immersive interactions, this work probes the increasingly important accessibility issues from a two-fold approach. Firstly, the work proposes an ontological data model to hand ...
Speech recognition-based applications upon the advancements in artificial intelligence play an essential role to transform most aspects of modern life. However, speech recognition in real-life conditions (e.g., in the presence of overlapping speech, varyin ...
A large body of work shows that machine learning (ML) models can leak sensitive or confidential information about their training data. Recently, leakage due to distribution inference (or property inference) attacks is gaining attention. In this attack, the ...
In the current era of big data, aggregation queries on high-dimensional datasets are frequently utilized to uncover hidden patterns, trends, and correlations critical for effective business decision-making. Data cubes facilitate such queries by employing p ...
Over the years, clinical institutes accumulated large amounts of digital slides from resected tissue specimens. These digital images, called whole slide images (WSIs), are high-resolution tissue snapshots that depict the complex interaction of cells at the ...
Blood pressure (BP) is a crucial indicator of cardiovascular health. Hypertension is a common life-threatening condition and a key factor of cardiovascular diseases (CVDs). Identifying abnormal BP fluctuations can allow for early detection and management o ...
Robustness of medical image classification models is limited by its exposure to the candidate disease classes. Generalized zero shot learning (GZSL) aims at correctly predicting seen and unseen classes and most current GZSL approaches have focused on the s ...
In wearable-based human activity recognition (HAR) research, one of the major challenges is the large intra-class variability problem. The collected activity signal is often, if not always, coupled with noises or bias caused by personal, environmental, or ...