Electrohelicity arises in molecules such as allene and spiropentadiene when their symmetry is reduced and helical frontier molecular orbitals (MOs) appear. Such molecules are optically active and electrohelicity has been suggested as a possible design prin ...
Cell-cell communication is fundamental for immune balance. Multivalent interactions of surface receptors at immune interfaces drive specific communication, with stimulatory and inhibitory signals guiding the immune outcome. Notably, the valency, affinity, ...
A major goal in the design of synthetic molecular machines is the creation of pumps that can use the input of energy to transport material from a reservoir at low chemical potential to a different reservoir at higher chemical potential, thereby forming and ...
The control of molecular systems by electrical charge or light is a prerequisite for their application in nanoelectronics. Such potential has been uniquely exploited in quinone-based resorcin[4]arene cavitands that can act as molecular grippers, reversibly ...
Photochemistry is a discipline that studies the interaction between light and matter with the scope to induce chemical transformations. The first conjugation between light and chemistry can be dated back to the lifespan of Giacomo Luigi Ciamician, who is c ...
A general framework to describe a vast majority of biology-inspired systems is to model them as stochastic processes in which multiple couplings are in play at the same time. Molecular motors, chemical reaction networks, catalytic enzymes, and particles ex ...
The intermetallic compound PdGa has recently attracted considerable interest for combining high catalytic activity with high reaction selectivity in symmetric heterogeneous catalysis, in particular semi-hydrogenation of acetylene and methanol steam reformi ...
The quest for nanoscale molecular machines has inspired the search for their close relatives, molecular grippers. This path was paved by the development of resorcin[4]arene cavitands and their quinone-based redox-active congeners. In this Concept article, ...
We obtain phonon lifetimes in aluminium by inelastic neutron scattering experiments, by ab initio molecular dynamics, and by perturbation theory. At elevated temperatures significant discrepancies are found between experiment and perturbation theory, which ...
Molecular machines have caused one of the greatest paradigm shifts in chemistry, and by powering artificial mechanical molecular systems and enabling autonomous motion, they are expected to be at the heart of exciting new technologies. One of the biggest c ...