Résumé
Distributed concurrency control is the concurrency control of a system distributed over a computer network (Bernstein et al. 1987, Weikum and Vossen 2001). In database systems and transaction processing (transaction management) distributed concurrency control refers primarily to the concurrency control of a distributed database. It also refers to the concurrency control in a multidatabase (and other multi-transactional object) environment (e.g., federated database, grid computing, and cloud computing environments. A major goal for distributed concurrency control is distributed serializability (or global serializability for multidatabase systems). Distributed concurrency control poses special challenges beyond centralized one, primarily due to communication and computer latency. It often requires special techniques, like distributed lock manager over fast computer networks with low latency, like switched fabric (e.g., InfiniBand). Commitment ordering (or commit ordering) is a general serializability technique that achieves distributed serializability (and global serializability in particular) effectively on a large scale, without concurrency control information distribution (e.g., local precedence relations, locks, timestamps, or tickets), and thus without performance penalties that are typical to other serializability techniques (Raz 1992). The most common distributed concurrency control technique is strong strict two-phase locking (SS2PL, also named rigorousness), which is also a common centralized concurrency control technique. SS2PL provides both the serializability, strictness, and commitment ordering properties. Strictness, a special case of recoverability, is utilized for effective recovery from failure, and commitment ordering allows participating in a general solution for global serializability. For large-scale distribution and complex transactions, distributed locking's typical heavy performance penalty (due to delays, latency) can be saved by using the atomic commitment protocol, which is needed in a distributed database for (distributed) transactions' atomicity (e.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
CS-300: Data-intensive systems
The purpose of this course is to discuss the design of database and operating systems concepts using a hands-on approach.
CS-322: Introduction to database systems
This course provides a deep understanding of the concepts behind data management systems. It covers fundamental data management topics such as system architecture, data models, query processing and op
CS-422: Database systems
This course is intended for students who want to understand modern large-scale data analysis systems and database systems. It covers a wide range of topics and technologies, and will prepare students