In mathematics, Richardson's theorem establishes the undecidability of the equality of real numbers defined by expressions involving integers, pi, and exponential and sine functions. It was proved in 1968 by mathematician and computer scientist Daniel Richardson of the University of Bath.
Specifically, the class of expressions for which the theorem holds is that generated by rational numbers, the number π, the number ln 2, the variable x, the operations of addition, subtraction, multiplication, composition, and the sin, exp, and abs functions.
For some classes of expressions (generated by other primitives than in Richardson's theorem) there exist algorithms that can determine whether an expression is zero.
Richardson's theorem can be stated as follows:
Let E be a set of expressions that represent functions. Suppose that E includes these expressions:
x (representing the identity function)
ex (representing the exponential functions)
sin x (representing the sin function)
all rational numbers, ln 2, and π (representing constant functions that ignore their input and produce the given number as output)
Suppose E is also closed under a few standard operations. Specifically, suppose that if A and B are in E, then all of the following are also in E:
A + B (representing the pointwise addition of the functions that A and B represent)
A − B (representing pointwise subtraction)
AB (representing pointwise multiplication)
A∘B (representing the composition of the functions represented by A and B)
Then the following decision problems are unsolvable:
Deciding whether an expression A in E represents a function that is nonnegative everywhere
If E includes also the expression |x| (representing the absolute value function), deciding whether an expression A in E represents a function that is zero everywhere
If E includes an expression B representing a function whose antiderivative has no representative in E, deciding whether an expression A in E represents a function whose antiderivative can be represented in E.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Market forces are continuously driving public and private organisations towards higher productivity, shorter process and production times, and fewer labour hours. To cope with these changes, organisations are adopting new organisational models of coordinat ...