Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Test-time domain adaptation aims to adapt a source pretrained model to a target domain without using any source data. Existing works mainly consider the case where the target domain is static. However, real-world machine perception systems are running in n ...
We study supervised learning problems for predicting properties of individuals who belong to one of two demographic groups, and we seek predictors that are fair according to statistical parity. This means that the distributions of the predictions within th ...
It was recently shown that almost all solutions in the symmetric binary perceptron are isolated, even at low constraint densities, suggesting that finding typical solutions is hard. In contrast, some algorithms have been shown empirically to succeed in fin ...
Thanks to Deep Learning Text-To-Speech (TTS) has achieved high audio quality with large databases. But at the same time the complex models lost any ability to control or interpret the generation process. For the big challenge of affective TTS it is infeasi ...
In this paper, we study an emerging class of neural networks, the Morphological Neural networks, from some modern perspectives. Our approach utilizes ideas from tropical geometry and mathematical morphology. First, we state the training of a binary morphol ...
We present a discriminative clustering approach in which the feature representation can be learned from data and moreover leverage labeled data. Representation learning can give a similarity-based clustering method the ability to automatically adapt to an ...
Structured and grounded representation of text is typically formalized by closed information extraction, the problem of extracting an exhaustive set of (subject, relation, object) triplets that are consistent with a predefined set of entities and relations ...
Neural Architecture Search (NAS) has fostered the automatic discovery of stateof- the-art neural architectures. Despite the progress achieved with NAS, so far there is little attention to theoretical guarantees on NAS. In this work, we study the generaliza ...
In this dissertation, we propose gradient-based methods for characterizing model behaviour for the purposes of knowledge transfer and post-hoc model interpretation. Broadly, gradients capture the variation of some output feature of the model upon unit vari ...
Learning in the brain is poorly understood and learning rules that respect biological constraints, yet yield deep hierarchical representations, are still unknown. Here, we propose a learning rule that takes inspiration from neuroscience and recent advances ...