Résumé
In immunology, peripheral tolerance is the second branch of immunological tolerance, after central tolerance. It takes place in the immune periphery (after T and B cells egress from primary lymphoid organs). Its main purpose is to ensure that self-reactive T and B cells which escaped central tolerance do not cause autoimmune disease. Peripheral tolerance prevents immune response to harmless food antigens and allergens, too. Deletion of self-reactive T cells in the thymus is only 60-70% efficient, and naive T cell repertoire contains a significant portion of low-avidity self-reactive T cells. These cells can trigger an autoimmune response, and there are several mechanisms of peripheral tolerance to prevent their activation. Antigen-specific mechanisms of peripheral tolerance include persistent of T cell in quiescence, ignorance of antigen and direct inactivation of effector T cells by either clonal deletion, conversion to regulatory T cells (Tregs) or induction of anergy. Tregs, which are also generated during thymic T cell development, further suppress the effector functions of conventional lymphocytes in the periphery. Dendritic cells (DCs) participate in the negative selection of autoreactive T cells in the thymus, but they also mediate peripheral immune tolerance through several mechanisms. Dependence of a particular antigen on either central or peripheral tolerance is determined by its abundance in the organism. B cell peripheral tolerance is much less studied and is largely mediated by B cell dependence on T cell help. Tregs are the central mediators of immune suppression and they play a key role in maintaining peripheral tolerance. The master regulator of Treg phenotype and function is Foxp3. Natural Tregs (nTregs) are generated in the thymus during the negative selection. TCR of nTregs shows a high affinity for self-peptides, Induced Tregs (iTreg) develop from conventional naive helper T cells after antigen recognition in presence of TGF-β and IL-2. iTregs are enriched in the gut to establish tolerance to commensal microbiota and harmless food antigens.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.