Publications associées (20)

Deep learning parametric response mapping from inspiratory chest CT scans: a new approach for small airway disease screening

Jiancheng Yang, Zhiye Wang, Jun Lu, Zhigang Li, Lin Qi, Ming Li, Bo Du, Yuxuan Sun, Ziyi Liu

Objectives Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans can eff ...
London2023

Impact of COVID-19 on long-term lung function in lung transplant recipients: A single-center retrospective cohort study

Nahal Mansouri

Available data are limited concerning long-term lung function (LF) evolution after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in lung transplant (LT) recipients. The aim of this study is to determine the effect of first SARS-CoV ...
WILEY2023

Deep learning diagnostic and severity-stratification for interstitial lung diseases and chronic obstructive pulmonary disease in digital lung auscultations and ultrasonography: clinical protocol for an observational case-control study

Mary-Anne Hartley

BackgroundInterstitial lung diseases (ILD), such as idiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP), and chronic obstructive pulmonary disease (COPD) are severe, progressive pulmonary disorders with a poor prognosis. Prom ...
BMC2023

DeepBreath-automated detection of respiratory pathology from lung auscultation in 572 pediatric outpatients across 5 countries

Martin Jaggi, Mary-Anne Hartley, Juliane Dervaux, Tatjana Chavdarova, Daniel Mueller, Julien Niklas Heitmann, Daniel Hinjos García

The interpretation of lung auscultation is highly subjective and relies on non-specific nomenclature. Computer-aided analysis has the potential to better standardize and automate evaluation. We used 35.9 hours of auscultation audio from 572 pediatric outpa ...
NATURE PORTFOLIO2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.