In general relativity, Schwarzschild geodesics describe the motion of test particles in the gravitational field of a central fixed mass that is, motion in the Schwarzschild metric. Schwarzschild geodesics have been pivotal in the validation of Einstein's theory of general relativity. For example, they provide accurate predictions of the anomalous precession of the planets in the Solar System and of the deflection of light by gravity.
Schwarzschild geodesics pertain only to the motion of particles of masses so small they contribute little to the gravitational field. However, they are highly accurate in many astrophysical scenarios provided that is many-fold smaller than the central mass , e.g., for planets orbiting their sun. Schwarzschild geodesics are also a good approximation to the relative motion of two bodies of arbitrary mass, provided that the Schwarzschild mass is set equal to the sum of the two individual masses and . This is important in predicting the motion of binary stars in general relativity.
The Schwarzschild metric is named in honour of its discoverer Karl Schwarzschild, who found the solution in 1915, only about a month after the publication of Einstein's theory of general relativity. It was the first exact solution of the Einstein field equations other than the trivial flat space solution.
In 1931, Yusuke Hagihara published a paper showing that the trajectory of a test particle in the Schwarzschild metric can be expressed in terms of elliptic functions.
Samuil Kaplan in 1949 has shown that there is a minimum radius for the circular orbit to be stable in Schwarzschild metric.
Schwarzschild metric and Deriving the Schwarzschild solution
An exact solution to the Einstein field equations is the Schwarzschild metric, which corresponds to the external gravitational field of an uncharged, non-rotating, spherically symmetric body of mass .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will serve as a first introduction to the geometry of Riemannian manifolds, which form an indispensible tool in the modern fields of differential geometry, analysis and theoretical physics
La relativité générale a la réputation d'être une théorie fortement mathématique, qui n'était pas fondée au départ sur des observations. Cependant, même si ses postulats ne sont pas directement testables, elle prédit de nombreux effets observables de déviations par rapport aux théories physiques qui ont précédé. Cette page expose donc les tests expérimentaux de la relativité générale. L'avance du périhélie de Mercure, la courbure des rayons lumineux et le décalage vers le rouge sont les trois tests classiques de la relativité générale qui ont été proposés par Einstein lui-même.
This thesis is devoted to studying field-theoretical branes in warped geometries, with emphasis on brane excitations and properties of background solutions. Firstly, we examine the features of a model in which our universe is represented by a local string- ...
The largest operating stellarator, Wendelstein 7-X, is of the quasi-isodynamic type. For this design to scale up to a fusion reactor, several criteria must be met, one of them being good fast ion confinement. The latter still has to be tested experimentall ...
Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) method fo ...