Vassily HatzimanikatisDr. Vassily Hatzimanikatis is currently Associate Professor of Chemical Engineering and Bioengineering at Ecole Polytechnique Federale de Lausanne (EPFL), in Lausanne, Switzerland. Vassily received a PhD and an MS in Chemical Engineering from the California Institute of Technology, and his Diploma in Chemical Engineering from the University of Patras, in Greece. After the completion of his doctoral studies, he held a research group leader position at the Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland. Prior to joining EPFL, Vassily worked for three years in DuPont, Cargill, and Cargill Dow, and he has been assistant professor at Northwestern University, at Illinois, USA.
Vassilys research interests are in the areas of computational systems biology, biotechnology, and complexity. He is associate editor of the journals Biotechnology & Bioengineering, Metabolic Engineering and Integrative Biology, and he serves on the editorial advisory board of the journals Bioprocess and Biosystems Engineering, Journal of Chemical Technology and Biotechnology, and Industrial Biotechnology. He has written over 70 technical publications and he is co-inventor in three patents and patent applications.
Vassily is a fellow of the American Institute for Medical and Biological Engineering (2010), he was a DuPont Young Professor (2001-2004), and he has also received the Jay Bailey Young Investigator Award in Metabolic Engineering (2000), and the ACS Elmar Gaden Award (2011).
Alfio QuarteroniOf italian nationality, Alfio Quarteroni was born on May 30th 1952. He pursued his studies in mathematics at University of Pavia and at University of Paris VI. In 1986 he was nominated full professor at Catholic University of Brescia, later professor in mathematics at University of Minnesota at Minneapolis and professor in numerical analysis at Politecnico di Milano. He is designated full professor in 1997 and enters into service with EPFL in 1998. At EPFL, he teaches numerical analysis to engineers and mathematicians and holds specialized courses about mathematical modelling and scientific computing for master and PhD students. He had been scientific director of CRS4, plenary speaker of more than two hundred international conferences; he is member of the European Academy of Sciences, the Italian Academy of Sciences, the Lombard Academy of Science and Letters. He is Editor in Chief of two book series (MS&A and Unitext) by Springer, associate editor of 25 international journals. He has been plenary speaker at the International Congress of Mathematicians ICM2006. He had been responsible of several European research networks. His team has carried out the aerodynamic and hydrodynamic simulations for the optimization of Alinghi, the Swiss sailing yacht that has won two editions of the America's Cup in 2003 and 2007.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Ursula RöthlisbergerU. Röthlisberger was born in Solothurn (Switzerland). In 1988 she made her diploma in Physical Chemistry in the group of Prof. Ernst Schumacher at the University of Berne (Switzerland). Her Ph.D. thesis was done in collaboration with Dr. Wanda Andreoni at the IBM Zurich Research Laboratory in Rüschlikon. After finishing her Ph.D in 1991 she spent some time as a postdoctoral research assistant at the IBM Research Lab. From 1992-1995 she was a postdoctoral research assistant in the group of Prof. Michael L. Klein at the University of Pennsylvania in Philadelphia (USA). In 1994 she was awarded an advanced researcher fellowship (Profil 2) from the Swiss National Science Foundation. Before starting her Profile 2-fellowship she spent another year as postdoctoral research assistant in the group of Prof. Michele Parrinello at the Max-Planck-Institute for Solid State Physics in Stuttgart, Germany. In 1996 she moved as Profile 2-fellow to the ETH in Zurich, hosted by the group of Prof. Wilfred F. van Gunsteren. In 1997 she became Assistant Professor of Computer-Aided Inorganic Chemistry at the ETH Zurich.
Mark PaulyMark Pauly is a full professor at the School of Computer and Communication Sciences at EPFL. Prior to joining EPFL, he was assistant professor at the CS department of ETH Zurich since April 2005. From August 2003 to March 2005 he was a postdoctoral scholar at Stanford University, where he also held a position as visiting assistant professor during the summer of 2005. He received his Ph.D. degree (with distinction) in 2003 from ETH Zurich and his M.S. degree (with highest honors) in 1999 from TU Kaiserslautern. His research interests include computer graphics and animation, shape modeling and analysis, geometry processing, architectural geometry, and digital fabrication. He received the ETH medal for outstanding dissertation, was awarded the Eurographics Young Researcher Award in 2006 and the Eurographics Outstanding Technical Contributions Award in 2016.
Berend SmitBerend Smit received an MSc in Chemical Engineering in 1987 and an MSc in Physics both from the Technical University in Delft (the Netherlands). He received in 1990 cum laude PhD in Chemistry from Utrecht University (the Netherlands). He was a (senior) Research Physicists at Shell Research from 1988-1997, Professor of Computational Chemistry at the University of Amsterdam (the Netherlands) 1997-2007.
In 2004 Berend Smit was elected Director of the European Center of Atomic and Molecular Computations (CECAM) Lyon France. Since 2007 he is Professor of Chemical Engineering and Chemistry at U.C. Berkeley and Faculty Chemist at Materials Sciences Division, Lawrence Berkeley National Laboratory. Since 2014 he has been director of the Energy Center at EPFL.