Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena.
The pioneers of chemical graph theory are Alexandru Balaban, Ante Graovac, Iván Gutman, Haruo Hosoya, Milan Randić and Nenad Trinajstić (also Harry Wiener and others).
In 1988, it was reported that several hundred researchers worked in this area, producing about 500 articles annually. A number of monographs have been written in the area, including the two-volume comprehensive text by Trinajstić, Chemical Graph Theory, that summarized the field up to mid-1980s.
The adherents of the theory maintain that the properties of a chemical graph (i.e., a graph-theoretical representation of a molecule) give valuable insights into the chemical phenomena. Others contend that graphs play only a fringe role in chemical research. One variant of the theory is the representation of materials as infinite Euclidean graphs, particularly crystals by periodic graphs.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index, also known as a connectivity index, is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure.
vignette|Graphe moléculaire de la caféine. En théorie des graphes chimiques et en chimie mathématique, un graphe moléculaire ou chimique est une représentation de la formule développée d'un composé chimique en termes de théorie des graphes. Un graphe moléculaire est un graphe étiqueté dont les sommets correspondent aux atomes du composé et les arêtes correspondent aux liaisons chimiques. Ses sommets sont étiquetés avec les types d'atomes correspondants et les arêtes sont étiquetés avec les types de liaisons.
Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs" (Pach 2013).