vignette|Système stéréo à deux caméras. La corrélation d'images numériques (digital image correlation ou DIC en anglais) est une méthode optique 2D ou 3D qui permet de mesurer les déplacements entre deux images. Elle est de plus en plus employée en sciences des matériaux pour déterminer des champs de déformations, détecter des fissures ou pour fournir des champs de déplacements à des procédures d'identification de propriétés matériaux. Apparue dans les années 1980 aux États-Unis, la corrélation d'images est une technique expérimentale utilisée en mécanique, en science des matériaux afin de mesurer des déplacements et en déduire des déformations. Elle est inspirée de la (PIV en anglais), très utilisée en mécanique des fluides. Contrairement aux moyens de mesures traditionnels (extensomètres et jauges de déformation) qui donnent des valeurs moyennées en un point, la corrélation d'images permet d'accéder à des champs de valeurs sur l'ensemble de la surface observée. Le développement rapide des appareils photos et des caméras CCD donne accès à une grande quantité d'informations. En effet, chaque pixel du capteur apporte une information codée sur un nombre de bits définis par la sensibilité du capteur (typiquement 8, 12 et 16 bits). Cette information correspond au flux lumineux reçu sur ce pixel. Par exemple, l'information sur un pixel d'un capteur 8 bits prendra une valeur comprise entre 0 (noir) et 255 (blanc). Chaque image brute est stockée sous la forme d'une matrice 2D dont chaque case a une valeur que l'on appelle niveau de gris. Ces matrices sont les données d'entrées de la corrélation d'images. La corrélation d'images est une technique pour mesurer le champ de déplacement d'une surface d'une image déformée par rapport à une . On suppose donc que toute différence entre l'image de référence et l'image déformée provient du seul effet du champ de déplacement de la structure observée. Développées initialement aux États-Unis à partir des années 1980, les méthodes de corrélation d'images dites locales sont les plus largement répandues aujourd'hui.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.