Modèle probitEn statistiques, le modèle probit est un modèle de régression binomiale. Le modèle probit a été introduit par Chester Bliss en 1934. C'est un cas particulier du modèle linéaire généralisé. Soit Y une variable aléatoire binaire (i.e. prenant pour valeur 0 ou 1) et X un vecteur de variables dont on suppose qu'il influence Y. On fait l'hypothèse que le modèle s'écrit de la manière suivante : où désigne la fonction de répartition de la loi normale centrée réduite. Régression logistique Catégorie:Modèle statist
Iris de Fisherthumb|Nuage de points du jeu de données Le jeu de données Iris connu aussi sous le nom de Iris de Fisher ou Iris d'Anderson est un jeu de données multivariées présenté en 1936 par Ronald Fisher dans son papier The use of multiple measurements in taxonomic problems comme un exemple d'application de l'analyse discriminante linéaire. Les données ont été collectées par Edgar Anderson afin de quantifier les variations de morphologie des fleurs d'iris de trois espèces. Deux des trois espèces ont été collectées en Gaspésie.
Variable latenteIn statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables that can only be inferred indirectly through a mathematical model from other observable variables that can be directly observed or measured. Such latent variable models are used in many disciplines, including political science, demography, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, management, psychology and the social sciences.
Linear predictor functionIn statistics and in machine learning, a linear predictor function is a linear function (linear combination) of a set of coefficients and explanatory variables (independent variables), whose value is used to predict the outcome of a dependent variable. This sort of function usually comes in linear regression, where the coefficients are called regression coefficients. However, they also occur in various types of linear classifiers (e.g.