Longueur propreEn relativité restreinte, la longueur propre d'un corps est sa longueur mesurée dans un référentiel inertiel où il est immobile. Du fait de la contraction des longueurs, c'est la plus grande mesure que l'on puisse faire de ce corps dans un référentiel. La longueur propre ou longueur au repos d'un corps correspond à la longueur mesurée par un observateur inertiel au repos par rapport à ce corps, au moyen d'une règle ordinaire.
Rotating spheresIsaac Newton's rotating spheres argument attempts to demonstrate that true rotational motion can be defined by observing the tension in the string joining two identical spheres. The basis of the argument is that all observers make two observations: the tension in the string joining the bodies (which is the same for all observers) and the rate of rotation of the spheres (which is different for observers with differing rates of rotation). Only for the truly non-rotating observer will the tension in the string be explained using only the observed rate of rotation.
Absolute rotationIn physics, the concept of absolute rotation—rotation independent of any external reference—is a topic of debate about relativity, cosmology, and the nature of physical laws. For the concept of absolute rotation to be scientifically meaningful, it must be measurable. In other words, can an observer distinguish between the rotation of an observed object and their own rotation? Newton suggested two experiments to resolve this problem.
Observer (special relativity)In special relativity, an observer is a frame of reference from which a set of objects or events are being measured. Usually this is an inertial reference frame or "inertial observer". Less often an observer may be an arbitrary non-inertial reference frame such as a Rindler frame which may be called an "accelerating observer". The special relativity usage differs significantly from the ordinary English meaning of "observer".
Preferred frameIn theoretical physics, a preferred frame or privileged frame is usually a special hypothetical frame of reference in which the laws of physics might appear to be identifiably different (simpler) from those in other frames. In theories that apply the principle of relativity to inertial motion, physics is the same in all inertial frames, and is even the same in all frames under the principle of general relativity.
Local reference frameIn theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime. The term is most often used in the context of the application of local inertial frames to small regions of a gravitational field.
Synchronisation d'EinsteinLa 'synchronisation d'Einstein' (ou la synchronisation d'Einstein-Poincaré) est une convention de synchronisation d'horloges distantes et fixes dans un référentiel galiléen, au moyen d'échanges de signaux, dans le cadre de la relativité restreinte ou dans celui de la relativité générale. Deux horloges, identiques, distantes et immobiles dans un référentiel inertiel, sont dites synchronisées quand l'observateur, se plaçant à l'une qui marque le temps t, voit que l'autre affiche le temps t - dt où dt est le temps de transport de l'information entre les deux horloges (l'information parvenant à l'horloge au temps t est partie dt avant de l'autre horloge).
Euler forceIn classical mechanics, the Euler force is the fictitious tangential force that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axes. The Euler acceleration (named for Leonhard Euler), also known as azimuthal acceleration or transverse acceleration is that part of the absolute acceleration that is caused by the variation in the angular velocity of the reference frame. The Euler force will be felt by a person riding a merry-go-round.
Covariance généraleEn physique théorique, la covariance générale (ou invariance générale) est l'invariance de la forme des lois physiques dans toute transformation de coordonnées différentiable. Le principe qui sous-tend cette notion est qu'il n'existe a priori aucune coordonnée dans la Nature, ce sont seulement des artifices mathématiques utilisés pour la décrire, et qui ne devraient donc jouer aucun rôle dans l'expression des lois fondamentales de la physique.
Operational definitionAn operational definition specifies concrete, replicable procedures designed to represent a construct. In the words of American psychologist S.S. Stevens (1935), "An operation is the performance which we execute in order to make known a concept." For example, an operational definition of "fear" (the construct) often includes measurable physiologic responses that occur in response to a perceived threat. Thus, "fear" might be operationally defined as specified changes in heart rate, galvanic skin response, pupil dilation, and blood pressure.