While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that th ...
We develop an exchange rate target zone model with finite exit time and non-Gaussian tails. We show how the tails are a consequence of time-varying investor risk aversion, which generates mean-preserving spreads in the fundamental distribution. We solve ex ...
This paper proposes an algorithm to upper-bound maximal quantile statistics of a state function over the course of a Stochastic Differential Equation (SDE) system execution. This chance-peak problem is posed as a nonconvex program aiming to maximize the Va ...
Predictive models based on machine learning (ML) offer a compelling promise: bringing clarity and structure to complex natural and social environments. However, the use of ML poses substantial risks related to the privacy of their training data as well as ...
In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...
We tackle safe trajectory planning under Gaussian mixture model (GMM) uncertainty. Specifically, we use a GMM to model the multimodal behaviors of obstacles' uncertain states. Then, we develop a mixed-integer conic approximation to the chance-constrained t ...
This work aims to study the effects of wind uncertainties in civil engineering structural design. Optimising the design of a structure for safety or operability without factoring in these uncertainties can result in a design that is not robust to these per ...
In this work, we consider the problem of estimating the probability distribution, the quantile or the conditional expectation above the quantile, the so called conditional-value-at-risk, of output quantities of complex random differential models by the MLM ...
Introduction: Transfemoral amputations are known to compromise balance control capabilities, thus increasing the probability of falling. Current research in robotic prostheses is exploring novel strategies to assess the risk of fall and, if required, enabl ...
In this dissertation, I develop theory and evidence to argue that new technologies are central to how firms organize to create and capture value. I use computational methods such as reinforcement learning and probabilistic topic modeling to investigate thr ...