Résumé
Perturbation est un terme utilisé en astronomie en relation avec la description du mouvement complexe d'un objet massif soumis aux effets gravitationnels significatifs de plus d'un autre objet massif. Un tel mouvement complexe peut être décomposé schématiquement en composantes. Premièrement, il y a le mouvement hypothétique que le corps suivrait, s'il se déplaçait sous l'effet gravitationnel de l'autre corps seulement. Exprimé en d'autres termes, un tel mouvement peut être vu comme une solution du problème à deux corps, ou d'une orbite képlérienne non perturbée. Ensuite, les différences entre le mouvement non perturbé hypothétique et le mouvement réel du corps peuvent être décrites comme des perturbations, dues aux effets gravitationnels supplémentaires du ou des corps supplémentaires. S'il n'y a qu'un autre corps significatif, alors le mouvement perturbé est une solution du problème à trois corps ; s'il y a plus d'un corps significatif, le mouvement représente un cas du problème à n corps. Newton à l'époque où il formulait ses lois du mouvement et de la gravitation reconnaissait déjà l'existence des perturbations et les difficultés multiples de leur calcul. Depuis l'époque de Newton, plusieurs techniques ont été développées pour l'analyse mathématique des perturbations ; celles-ci peuvent être divisées en deux grandes classes, les perturbations générales et les perturbations spéciales. Dans les méthodes d'analyse des perturbations générales, les équations différentielles générales du mouvement sont résolues, habituellement par des approximations en séries, pour fournir un résultat exprimé généralement en termes de fonctions algébriques et trigonométriques, qui peut être ensuite appliqué à de nombreux jeux de conditions initiales. Historiquement, les perturbations générales ont été étudiées en premier. Dans les méthodes des perturbations spéciales, des jeux de données, représentant les valeurs des positions, vitesses et accélérations des corps étudiés, sont utilisés en entrée de l'intégration numérique des équations différentielles.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.