Concept

Glacial motion

Résumé
Glacial motion is the motion of glaciers, which can be likened to rivers of ice. It has played an important role in sculpting many landscapes. Most lakes in the world occupy basins scoured out by glaciers. Glacial motion can be fast (up to , observed on Jakobshavn Isbræ in Greenland) or slow ( on small glaciers or in the center of ice sheets), but is typically around . Glacier motion occurs from four processes, all driven by gravity: basal sliding, glacial quakes generating fractional movements of large sections of ice, bed deformation, and internal deformation. In the case of basal sliding, the entire glacier slides over its bed. This type of motion is enhanced if the bed is soft sediment, if the glacier bed is thawed and if meltwater is prevalent. Bed deformation is thus usually limited to areas of sliding. Seasonal melt ponding and penetrating under glaciers shows seasonal acceleration and deceleration of ice flows affecting whole icesheets. Some glaciers experience glacial quakes—glaciers "as large as Manhattan and as tall as the Empire State Building, can move 10 meters in less than a minute, a jolt that is sufficient to generate moderate seismic waves." There has been an increasing pattern of these ice quakes - "Quakes ranged from six to 15 per year from 1993 to 2002, then jumped to 20 in 2003, 23 in 2004, and 32 in the first 10 months of 2005." A glacier that is frozen up to its bed does not experience basal sliding. Internal deformation occurs when the weight of the ice causes the deformation of ice crystals. This takes place most readily near the glacier bed, where pressures are highest. There are glaciers that primarily move via sliding, glacial quakes, and others that move almost entirely through deformation. If a glacier's terminus moves forward faster than it melts, the net result is advance. Glacier retreat occurs when more material ablates from the terminus than is replenished by flow into that region. Glaciologists consider that trends in mass balance for glaciers are more fundamental than the advance or retreat of the termini of individual glaciers.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.