Concept

Turtle graphics

Résumé
In computer graphics, turtle graphics are vector graphics using a relative cursor (the "turtle") upon a Cartesian plane (x and y axis). Turtle graphics is a key feature of the Logo programming language. The turtle has three attributes: a location, an orientation (or direction), and a pen. The pen, too, has attributes: color, width, and on/off state (also called down and up). The turtle moves with commands that are relative to its own position, such as "move forward 10 spaces" and "turn left 90 degrees". The pen carried by the turtle can also be controlled, by enabling it, setting its color, or setting its width. A student could understand (and predict and reason about) the turtle's motion by imagining what they would do if they were the turtle. Seymour Papert called this "body syntonic" reasoning. A full turtle graphics system requires control flow, procedures, and recursion: many turtle drawing programs fall short. From these building blocks one can build more complex shapes like squares, triangles, circles and other composite figures. The idea of turtle graphics, for example is useful in a Lindenmayer system for generating fractals. Turtle geometry is also sometimes used in graphics environments as an alternative to a strictly coordinate-addressed graphics system. Turtle graphics are often associated with the Logo programming language. Seymour Papert added support for turtle graphics to Logo in the late 1960s to support his version of the turtle robot, a simple robot controlled from the user's workstation that is designed to carry out the drawing functions assigned to it using a small retractable pen set into or attached to the robot's body. Turtle geometry works somewhat differently from (x,y) addressed Cartesian geometry, being primarily vector-based (i.e. relative direction and distance from a starting point) in comparison to coordinate-addressed systems such as bitmaps or raster graphics. As a practical matter, the use of turtle geometry instead of a more traditional model mimics the actual movement logic of the turtle robot.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.