Le paradoxe de Curry fut présenté par le mathématicien Haskell Curry en 1942 et permet d'arriver à n'importe quelle conclusion à partir d'une phrase auto-référentielle et de quelques règles logiques simples. Une telle phrase s'énonce :
Si cette phrase est vraie, alors le monstre du Memphrémagog existe.
Il est aussi nommé le paradoxe de Löb puisque la preuve se déroule de manière semblable à celle du théorème de Löb publié en 1955 par le mathématicien Martin Löb.
On peut déduire l'existence d'un certain monstre légendaire comme suit : on peut se demander de façon spéculative, si la phrase était vraie, alors là, le monstre existerait-il ? Si on acceptait que la phrase soit vraie, on devrait accepter ce qu'elle dit. Or, elle dit que si elle est vraie, le monstre existe. Il semble que la réponse à notre question spéculative doit être oui : si la phrase est vraie, alors le monstre existe. Mais voilà ce qu'affirmait la phrase - non que le monstre existe, mais qu'il existe si la phrase est vraie. Alors il semble qu'il faille avouer que la phrase est vraie. Et bien sûr, puisque la phrase est vraie, il existe. Donc il y a vraiment un monstre au fond du lac Memphrémagog.
Puisqu'il est évident que n'importe quelle monstruosité pourrait se prouver de façon pareille, il s'agit d'un paradoxe.
Cela peut s'exprimer de façon tout à fait formelle. Désignons par Y l'existence du monstre, et par X la phrase qui affirme Y à condition que X. C'est-à-dire, la définition de X est X → Y. Le symbole « → » est le connecteur d'implication logique.
Dans le calcul classique des propositions, le connecteur d'implication n'est qu'une abréviation pour une disjonction et une négation ; par « si A, alors B » on entend « non A ou B ». Notre phrase auto-référentielle devient donc « cette phrase est fausse, ou le monstre du Memphrémagog existe », ce qui est une modification légère du paradoxe du menteur. Or la réponse classique à celui-ci est de nier la possibilité de phrase auto-référentielle. Un énoncé doit se composer de façon acyclique de propositions primitives liées par des connecteurs logiques.