Expéditions géodésiques françaisesthumb|Itinéraire de l'une des expéditions françaises des années 1730-1740 pour déterminer la forme exacte de la Terre. Carte de 1749. Au cours du , l'Académie des sciences organisa plusieurs expéditions scientifiques, outre-mers, afin de pouvoir répondre à un certain nombre de questions scientifiques, notamment sur la forme exacte de la Terre (était-elle parfaitement sphérique, aplatie aux pôles ou aplatie à l'équateur ?).
Déviation de la verticaleLa déviation de la verticale (DV) est l'angle entre la verticale (déterminée par la pesanteur) et la perpendiculaire à l'ellipsoïde terrestre. La déviation de la verticale résulte du relief et des anomalies internes de densité de la Terre. DV est un vecteur (composantes ξ, η), qui caractérise la différence entre zénith astronomique (φ, λ) et zénith ellipsoïdique ou géodésique (B, L) : ξ = φ - B = différence de la latitude η = (λ - L).cosφ = (différence de la longitude).
Distance (géographie)La distance en géographie peut être entendue comme la longueur de l'intervalle ou du trajet séparant deux ou plusieurs lieux. La distance est la marque d'une séparation, son franchissement nécessite obligatoirement une dépense énergétique. Les formules contenues dans cet article permettent de calculer les distances entre des points qui sont définis par leurs coordonnées géographiques à l'aide de la notion de latitude et de longitude. Calculer la distance entre deux coordonnées géographiques nécessite un certain degré d'abstraction.
Ellipsoïde de BesselL'ellipsoïde de Bessel (encore appelé Bessel 1841) est un ellipsoïde de référence utilisé pour l'Europe. Friedrich Wilhelm Bessel l'a calculé en 1841 à partir d'un important recueil de données topographiques à travers l'Europe (incluant la Russie) et l'Inde. Sa conception repose au total sur la longueur de dix arcs de méridien et 38 mesures précises de latitudes et longitudes. Les dimensions de cet ellipsoïde furent exprimées (conformément aux procédés de calcul numérique de l'époque) par leur logarithme.
Coordonnées géographiquesvignette|Coordonnées géographiques sur un globe : la latitude correspond à la mesure de l’angle marqué phi (φ) ; la mesure de l’angle marqué lambda (λ) par rapport au méridien de référence donne la longitude.|194x194px lang=fr|vignette|upright=1.5|Latitude et longitude sur la Terre. Par coordonnés géographiques (ou encore « repères géographiques ») d'un lieu sur la Terre, on entend un système de trois coordonnées qui sont le plus souvent : la latitude, la longitude et l'altitude (ou l'élévation) par rapport au niveau moyen de la mer (élévation orthométrique) ou par rapport à une surface de référence, en général ellipsoïde (élévation ellipsoïdale).
Earth's circumferenceEarth's circumference is the distance around Earth. Measured around the equator, it is . Measured around the poles, the circumference is . Measurement of Earth's circumference has been important to navigation since ancient times. The first known scientific measurement and calculation was done by Eratosthenes, by comparing altitudes of the mid-day sun at two places a known north–south distance apart. He achieved a great degree of precision in his computation. Treating the Earth as a sphere, its circumference would be its single most important measurement.
Triangulation (surveying)In surveying, triangulation is the process of determining the location of a point by measuring only angles to it from known points at either end of a fixed baseline by using trigonometry, rather than measuring distances to the point directly as in trilateration. The point can then be fixed as the third point of a triangle with one known side and two known angles. Triangulation can also refer to the accurate surveying of systems of very large triangles, called triangulation networks.