Publications associées (382)

Reshaping Perception for Autonomous Driving with Semantic Keypoints

Lorenzo Bertoni

The field of artificial intelligence is set to fuel the future of mobility by driving forward the transition from advanced driver-assist systems to fully autonomous vehicles (AV). Yet the current technology, backed by cutting-edge deep learning techniques, ...
EPFL2022

GeoNeRF: Generalizing NeRF with Geometry Priors

François Fleuret

We present GeoNeRF, a generalizable photorealistic novel view synthesis method based on neural radiance fields. Our approach consists of two main stages: a geometry reasoner and a renderer. To render a novel view, the geometry reasoner first constructs cas ...
IEEE COMPUTER SOC2022

Using footstep-induced vibrations for occupant detection and recognition in buildings

Ian Smith, Yves Sylvain Gilles Reuland, Sai Ganesh Sarvotham Pai, Slah Drira

Occupant detection and recognition support functional goals such as security, healthcare, and energy management in buildings. Typical sensing approaches, such as smartphones and cameras, undermine the privacy of building occupants and inherently affect the ...
2021

Poly-NL: Linear Complexity Non-local Layers With 3rd Order Polynomials

Grigorios Chrysos, Filippos Kokkinos

Spatial self-attention layers, in the form of Non-Local blocks, introduce long-range dependencies in Convolutional Neural Networks by computing pairwise similarities among all possible positions. Such pairwise functions underpin the effectiveness of non-lo ...
IEEE2021

Human-Centered Scene Understanding via Crowd Counting

Weizhe Liu

Human-centered scene understanding is the process of perceiving and analysing a dynamic scene observed through a network of sensors with emphasis on human-related activities. It includes the visual perception of human-related activities from either single ...
EPFL2021

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.