En traitement d'images, la pyramide est une représentation multi-résolution d'une image. Elle permet de modéliser l'image à différentes , depuis l'image initiale jusqu'à une image très grossière. La pyramide d'images est souvent utilisée car elle permet à l'algorithme de traitement d'image de travailler depuis les détails jusqu'au « grossier ». Cet outil est notamment utilisé à des fins de .
Les principaux types de construction d'une pyramide d'images sont :
Gaussienne
Laplacienne
Irrégulière
Adaptative
Il existe deux principaux types de pyramides : passe-bas, et passe-bande.
Une pyramide passe-bas est réalisée en lissant l'image avec un filtre approprié pour ensuite la sous-échantillonner avec l'image lissée. On utilise généralement un facteur 2 le long de chaque direction. La procédure est ensuite répétée sur l'image résultante. Ce cycle est répété plusieurs fois. Chaque cycle de cette procédure résulte en une image plus petite avec un lissage plus important, mais avec une diminution de la densité de l'échantillonnage spatial (c'est-à-dire une diminution de la résolution de l'image). Illustré graphiquement, la représentation des images à différentes résolutions ressemble à une pyramide, avec l'image originale comme base et les images plus petites résultant de chaque cycle.
Une pyramide passe-bande est réalisée en faisant la différence entre les images dont les niveaux sont adjacents dans la pyramide avec une interpolation entre les niveaux de résolution adjacents (mise à l'échelle), ce qui permet le calcul des différences par pixel.
De nombreux de lissage ont été proposés pour la création de pyramides. Parmi les différentes suggestions données, les noyaux binomiaux provenant des coefficients binomiaux se démarquent en tant que particulièrement pratiques et théoriquement bien fondés. Ainsi, avec pour une image en deux dimensions, nous pouvons appliquer un filtre binomial (normalisé) (, , ) typiquement, deux fois ou plus le long de chaque dimension spatiale, avant de sous-échantillonner par un facteur deux.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in JAVA; application to real-world examples in industrial vision and biomedical imagi
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping in JAVA. Application to real-world examples in industrial visi
We cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
En traitement d'images, la pyramide est une représentation multi-résolution d'une image. Elle permet de modéliser l'image à différentes , depuis l'image initiale jusqu'à une image très grossière. La pyramide d'images est souvent utilisée car elle permet à l'algorithme de traitement d'image de travailler depuis les détails jusqu'au « grossier ». Cet outil est notamment utilisé à des fins de . Les principaux types de construction d'une pyramide d'images sont : Gaussienne Laplacienne Irrégulière Adaptative Il existe deux principaux types de pyramides : passe-bas, et passe-bande.
Le filtre de Gauss est, en électronique et en traitement du signal, un filtre dont la réponse impulsionnelle est une fonction gaussienne. Le filtre de Gauss minimise les temps de montée et de descente, tout en assurant l'absence de dépassement en réponse à un échelon. Cette propriété est étroitement liée au fait que le filtre de Gauss présente un retard de groupe minimal. En mathématiques, le filtre de Gauss modifie le signal entrant par une convolution avec une fonction gaussienne ; cette transformation est également appelée transformation de Weierstrass.
In , a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce and reduce detail. The visual effect of this blurring technique is a smooth blur resembling that of viewing the image through a translucent screen, distinctly different from the bokeh effect produced by an out-of-focus lens or the shadow of an object under usual illumination.