Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In geodesy and navigation, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length. The purpose of measuring meridian arcs is to determine a figure of the Earth. One or more measurements of meridian arcs can be used to infer the shape of the reference ellipsoid that best approximates the geoid in the region of the measurements. Measurements of meridian arcs at several latitudes along many meridians around the world can be combined in order to approximate a geocentric ellipsoid intended to fit the entire world. The earliest determinations of the size of a spherical Earth required a single arc. Accurate survey work beginning in the 19th century required several arc measurements in the region the survey was to be conducted, leading to a proliferation of reference ellipsoids around the world. The latest determinations use astro-geodetic measurements and the methods of satellite geodesy to determine reference ellipsoids, especially the geocentric ellipsoids now used for global coordinate systems such as WGS 84 (see numerical expressions). Early estimations of Earth's size are recorded from Greece in the 4th century BC, and from scholars at the caliph's House of Wisdom in Baghdad in the 9th century. The first realistic value was calculated by Alexandrian scientist Eratosthenes about 240 BC. He estimated that the meridian has a length of 252,000 stadia, with an error on the real value between -2.4% and +0.8% (assuming a value for the stadion between 155 and 160 metres). Eratosthenes described his technique in a book entitled On the measure of the Earth, which has not been preserved. A similar method was used by Posidonius about 150 years later, and slightly better results were calculated in 827 by the arc measurement method, attributed to the Caliph Al-Ma'mun. Earth ellipsoid#Determination Early literature uses the term oblate spheroid to describe a sphere "squashed at the poles".
Helena Van Swygenhoven, Steven Van Petegem, Samy Hocine
Corentin Jean Dominique Fivet, Nicolas Robin Montagne, Olivier Baverel