NOTOC
In mathematics, a group is called an Iwasawa group, M-group or modular group if its lattice of subgroups is modular. Alternatively, a group G is called an Iwasawa group when every subgroup of G is permutable in G .
proved that a p-group G is an Iwasawa group if and only if one of the following cases happens:
G is a Dedekind group, or
G contains an abelian normal subgroup N such that the quotient group G/N is a cyclic group and if q denotes a generator of G/N, then for all n ∈ N, q−1nq = n1+ps where s ≥ 1 in general, but s ≥ 2 for p=2.
In , Iwasawa's proof was deemed to have essential gaps, which were filled by Franco Napolitani and Zvonimir Janko. has provided an alternative proof along different lines in his textbook. As part of Schmidt's proof, he proves that a finite p-group is a modular group if and only if every subgroup is permutable, by .
Every subgroup of a finite p-group is subnormal, and those finite groups in which subnormality and permutability coincide are called PT-groups. In other words, a finite p-group is an Iwasawa group if and only if it is a PT-group.
The Iwasawa group of order 16 is isomorphic to the modular maximal-cyclic group of order 16.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|Diagramme de Hasse du treillis des sous-groupes du groupe diédral D. En mathématique, le treillis des sous-groupes d'un groupe G est le treillis constitué des sous-groupes de G, muni de l'inclusion comme relation d'ordre partielle. La borne supérieure de deux sous-groupes a et b est le sous-groupe engendré par l'union de a et b et leur borne inférieure est leur intersection. Le groupe diédral D des huit isométries du carré contient dix sous-groupes, y compris D lui-même et son sous-groupe trivial.