Concept

Prime model

In mathematics, and in particular model theory, a prime model is a model that is as simple as possible. Specifically, a model is prime if it admits an elementary embedding into any model to which it is elementarily equivalent (that is, into any model satisfying the same complete theory as ). In contrast with the notion of saturated model, prime models are restricted to very specific cardinalities by the Löwenheim–Skolem theorem. If is a first-order language with cardinality and is a complete theory over then this theorem guarantees a model for of cardinality Therefore no prime model of can have larger cardinality since at the very least it must be elementarily embedded in such a model. This still leaves much ambiguity in the actual cardinality. In the case of countable languages, all prime models are at most countably infinite. There is a duality between the definitions of prime and saturated models. Half of this duality is discussed in the article on saturated models, while the other half is as follows. While a saturated model realizes as many types as possible, a prime model realizes as few as possible: it is an atomic model, realizing only the types that cannot be omitted and omitting the remainder. This may be interpreted in the sense that a prime model admits "no frills": any characteristic of a model that is optional is ignored in it. For example, the model is a prime model of the theory of the natural numbers N with a successor operation S; a non-prime model might be meaning that there is a copy of the full integers that lies disjoint from the original copy of the natural numbers within this model; in this add-on, arithmetic works as usual. These models are elementarily equivalent; their theory admits the following axiomatization (verbally): There is a unique element that is not the successor of any element; No two distinct elements have the same successor; No element satisfies Sn(x) = x with n > 0. These are, in fact, two of Peano's axioms, while the third follows from the first by induction (another of Peano's axioms).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.