In control theory, backstepping is a technique developed circa 1990 by Petar V. Kokotovic and others for designing stabilizing controls for a special class of nonlinear dynamical systems. These systems are built from subsystems that radiate out from an irreducible subsystem that can be stabilized using some other method. Because of this recursive structure, the designer can start the design process at the known-stable system and "back out" new controllers that progressively stabilize each outer subsystem. The process terminates when the final external control is reached. Hence, this process is known as backstepping. The backstepping approach provides a recursive method for stabilizing the origin of a system in strict-feedback form. That is, consider a system of the form where with , are scalars, u is a scalar input to the system, vanish at the origin (i.e., ), are nonzero over the domain of interest (i.e., for ). Also assume that the subsystem is stabilized to the origin (i.e., ) by some known control such that . It is also assumed that a Lyapunov function for this stable subsystem is known. That is, this x subsystem is stabilized by some other method and backstepping extends its stability to the shell around it. In systems of this strict-feedback form around a stable x subsystem, The backstepping-designed control input u has its most immediate stabilizing impact on state . The state then acts like a stabilizing control on the state before it. This process continues so that each state is stabilized by the fictitious "control" . The backstepping approach determines how to stabilize the x subsystem using , and then proceeds with determining how to make the next state drive to the control required to stabilize x. Hence, the process "steps backward" from x out of the strict-feedback form system until the ultimate control u is designed. It is given that the smaller (i.e., lower-order) subsystem is already stabilized to the origin by some control where . That is, choice of to stabilize this system must occur using some other method.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.