Concept

Dialectica interpretation

Concepts associés (6)
Réalisabilité
La réalisabilité est une branche de la logique mathématique, et plus précisément de la théorie de la démonstration, qui définit une relation logique entre les formules d'un système logique et les programmes d'un modèle de calcul. Elle a été introduite dans les années 40 par Kleene comme une interprétation des formules de l' par des ensembles (d'indices) de fonctions récursives. Elle a depuis été étendue à toute sorte d'autres systèmes logiques, et aujourd'hui est vue comme une généralisation de la correspondance de Curry-Howard.
Primitive recursive arithmetic
Primitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to ε0, which is the proof-theoretic ordinal of Peano arithmetic.
Heyting arithmetic
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it. Heyting arithmetic can be characterized just like the first-order theory of Peano arithmetic , except that it uses the intuitionistic predicate calculus for inference. In particular, this means that the double-negation elimination principle, as well as the principle of the excluded middle , do not hold.
Théorie de la démonstration
La théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.
Logique intuitionniste
La logique intuitionniste est une logique qui diffère de la logique classique par le fait que la notion de vérité est remplacée par la notion de preuve constructive. Une proposition telle que « la constante d'Euler-Mascheroni est rationnelle ou la constante d'Euler-Mascheroni n'est pas rationnelle » n'est pas démontrée de manière constructive (intuitionniste) dans le cadre de nos connaissances mathématiques actuelles, car la tautologie classique « P ou non P » (tiers exclu) n'appartient pas à la logique intuitionniste.
Kurt Gödel
Kurt Gödel, né le à Brünn et mort le à Princeton (New Jersey), est un logicien et mathématicien autrichien naturalisé américain. Son résultat le plus connu, le théorème d'incomplétude de Gödel, affirme que n'importe quel système logique suffisamment puissant pour décrire l'arithmétique des entiers admet des propositions sur les nombres entiers ne pouvant être ni infirmées ni confirmées à partir des axiomes de la théorie. Ces propositions sont qualifiées d'indécidables.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.