Concepts associés (16)
Neural network
A neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Conscience artificielle
La conscience artificielle, également connue sous le nom de conscience des machines ou de conscience synthétique, est un domaine de recherche visant à comprendre, modéliser et tester la potentielle conscience liée aux intelligences artificielles. Ce champ de recherche s'inspire régulièrement d'expériences de pensée telles que celle du spectre inversé, de l'argument de la connaissance, du zombie philosophique ou encore de la chambre chinoise.
Modèle cognitif
Un modèle cognitif est une représentation simplifiée visant à modéliser des processus psychologiques ou intellectuels. Leur champ d'application est principalement la psychologie cognitive et l'intelligence artificielle à travers la notion d'agent. Les sciences cognitives se servent de manière récurrente de modèles cognitifs : devant la complexité des processus permettant d'expliquer les raisonnements et les comportements, il est en effet pratique de passer par des hypothèses simplificatrices sous forme de modèles.
Soar (architecture cognitive)
Soar (à l’origine SOAR) est une architecture cognitive symbolique, créée par , Allen Newell, et Paul Rosenbloom à l’Université Carnegie-Mellon. C’est à la fois un point de vue sur la cognition et une implémentation de ce point de vue au travers d’une architecture de programmation pour l’Intelligence artificielle (IA). Depuis ses débuts en 1983 et sa présentation dans un article en 1987, Soar a été largement utilisé par les chercheurs en IA pour modéliser différents aspects du comportement humain.
Symbolic artificial intelligence
In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.
Agent intelligent
En intelligence artificielle, un agent intelligent (AI) est une entité autonome capable de percevoir son environnement grâce à des capteurs et aussi d'agir sur celui-ci via des effecteurs afin de réaliser des objectifs. Un agent intelligent peut également apprendre ou utiliser des connaissances pour pouvoir réaliser ses objectifs. Ils peuvent être simples ou complexes. Par exemple, un simple système réactif, comme le thermostat est considéré comme étant un agent intelligent.
Mémoire temporelle et hiérarchique
La mémoire temporelle et hiérarchique (en anglais Hierarchical temporal memory (HTM)) est un modèle d'apprentissage automatique développé par Jeff Hawkins et Dileep George de la compagnie Numenta. Il modélise certaines propriétés structurelles et algorithmiques du néocortex. C'est un modèle biomimétique fondé sur le paradigme mémoire-prédiction, une théorie du fonctionnement du cerveau élaborée par Jeff Hawkins dans son livre On Intelligence.
Action selection
Action selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, "the action selection problem" is typically associated with intelligent agents and animats—artificial systems that exhibit complex behaviour in an agent environment. The term is also sometimes used in ethology or animal behavior. One problem for understanding action selection is determining the level of abstraction used for specifying an "act".
Neural correlates of consciousness
The neural correlates of consciousness (NCC) refer to the relationships between mental states and neural states and constitute the minimal set of neuronal events and mechanisms sufficient for a specific conscious percept. Neuroscientists use empirical approaches to discover neural correlates of subjective phenomena; that is, neural changes which necessarily and regularly correlate with a specific experience.
Conceptual space
A conceptual space is a geometric structure that represents a number of quality dimensions, which denote basic features by which concepts and objects can be compared, such as weight, color, taste, temperature, pitch, and the three ordinary spatial dimensions. In a conceptual space, points denote objects, and regions denote concepts. The theory of conceptual spaces is a theory about concept learning first proposed by Peter Gärdenfors. It is motivated by notions such as conceptual similarity and prototype theory.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.