Concept

FV4034 Challenger 2

Publications associées (78)

Match Normalization: Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real World

Mathieu Salzmann, Zheng Dang

In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches have shown remarkable success on synthetic datasets, we have observed them to fail in the presence of real-world data. We ...
Ieee Computer Soc2024

Control upgrade for the TCV coils power supplies

Damien Fasel, Ugo Siravo, Jérémie Dubray, Nicolas Cherix

The Tokamak a` Configuration Variable (TCV) coil converters are fed, during the plasma pulse, by a flywheel generator (FG) providing the AC voltages few seconds before the plasma pulse. The synchronization with the 120 Hz frequency delivered by the FG, var ...
ELSEVIER SCIENCE SA2023

Atomistic modeling of C-S-H: bulk and surface

Ziga Casar

By replacing part of Portland cement with so-called supplementary cementitious materials (SCMs) it is possible to reduce the CO2 footprint of the cement industry. These SCMs are commonly limestone, calcined clay, slag and fly ash. While doing so the early ...
EPFL2023

Peeling in electroadhesion soft grippers

Herbert Shea, Vito Cacucciolo

Electroadhesion endows robots with super-human abilities: mechanical geckoes that climb vertical walls and soft grippers that grasp the most delicate objects. Based on electrostatics, the adhesion forces are turned on and off by an electrical signal, promi ...
ELSEVIER2022

Preliminary Design of a Lunar Reconnaissance Drone

Erik Uythoven, Thomas Pfeiffer

In this report, a preliminary design study of a compact lunar reconnaissance drone module which will assist exploration rovers is presented. It is designed to assist future exploratory rover missions in difficult environments such as PSRs or extreme topogr ...
2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.