Rapport gyromagnétiqueEn physique, le rapport gyromagnétique est le rapport entre le moment magnétique et le moment cinétique d'une particule. Son unité dans le Système international est le coulomb par kilogramme (C⋅kg). En pratique, on donne souvent , exprimé en mégahertz par tesla (MHz⋅T), essentiel en RMN. Tout système libre possédant un rapport gyromagnétique constant, (un atome d'hydrogène par exemple), placé dans un champ magnétique non aligné avec le moment magnétique du système, sera entraîné dans un mouvement de précession de Larmor à la fréquence telle que : C'est pourquoi les valeurs de sont plus souvent données que .
Rayon de Bohrvignette|Image reprenant le modèle de Bohr. Dans le modèle de Bohr de l'atome d'hydrogène, le rayon de Bohr est la longueur caractéristique séparant l'électron du proton. C'est donc un ordre de grandeur du rayon des atomes. On retrouve ce rayon de Bohr également par l'approche quantique de la description de l'atome, où il représente la valeur moyenne dans le temps de la distance entre l'électron et le proton. L'éponyme du rayon de Bohr est le physicien danois Niels Bohr (-).
Spin quantum numberIn physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
Effet Zeemanvignette|Photo de l'effet Zeeman, prise en 1896 par Pieter Zeeman. L’effet Zeeman désigne la séparation d'un niveau atomique d'énergie défini d'un atome ou d'une molécule en plusieurs sous-niveaux d'énergies distinctes, sous l'effet d'un champ magnétique externe. Il y a donc levée de dégénérescence des niveaux énergétiques. L'effet s'observe aisément par spectroscopie : lorsqu'une source de lumière est plongée dans un champ magnétique statique, ses raies spectrales se séparent en plusieurs composantes.