Concept

Molecular engineering

Résumé
Molecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions. This approach, in which observable properties of a macroscopic system are influenced by direct alteration of a molecular structure, falls into the broader category of “bottom-up” design. Molecular engineering is highly interdisciplinary by nature, encompassing aspects of chemical engineering, materials science, bioengineering, electrical engineering, physics, mechanical engineering, and chemistry. There is also considerable overlap with nanotechnology, in that both are concerned with the behavior of materials on the scale of nanometers or smaller. Given the highly fundamental nature of molecular interactions, there are a plethora of potential application areas, limited perhaps only by one's imagination and the laws of physics. However, some of the early successes of molecular engineering have come in the fields of immunotherapy, synthetic biology, and printable electronics (see molecular engineering applications). Molecular engineering is a dynamic and evolving field with complex target problems; breakthroughs require sophisticated and creative engineers who are conversant across disciplines. A rational engineering methodology that is based on molecular principles is in contrast to the widespread trial-and-error approaches common throughout engineering disciplines. Rather than relying on well-described but poorly-understood empirical correlations between the makeup of a system and its properties, a molecular design approach seeks to manipulate system properties directly using an understanding of their chemical and physical origins. This often gives rise to fundamentally new materials and systems, which are required to address outstanding needs in numerous fields, from energy to healthcare to electronics.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.